A COMPARATIVE STUDY OF THE PERFORMANCE OF A LOW HEAT REJECTION ENGINE WITH TWO DIFFERENT LEVELS OF INSULATION WITH ALTERNATE FUELS

M.V.S.Murali Krishna, P.V.K.Murthy, C.M.Vara Prasad and A.V. Sita Rama Raju

Need for alternate fuels

- Depletion of fossil fuels
- Increase of pollution levels with fossil fuels

Impact on economy

Which fuel is to be conserved

Diesel Or Petrol

Diesel is used not only in transportation but also in agriculture sector

Probable candidates for alternate fuels

Alcohol

Non-Edible Vegetable oils

Advantages of alcohol as fuel in diesel engine

High volatile fuel

Increases homogeneity

Decreases pollution levels

Methods of Introducing Alcohol in Diesel Engine

Emulsification

Dual fuel technique

Carburetion technique

Spark glowing technique

Disadvantages of alcohol as fuel in diesel engine

Low cetane number

 Engine modification is necessary to use alcohol as fuel

Advantages of vegetable oils as fuel in diesel engine

High cetane number

Engine modification is not necessary

Fuel can be injected directly into the engine

Drawbacks of vegetable oil as fuel in diesel engine

Low volatility

High viscosity

Cause injection problems

Concept of LHR engine

 To minimize heat loss to the coolant by providing heat resistance in the heat flow to the coolant

Various forms of LHR engines

- Ceramic coated engine
- Air gap insulated piston engine
- Air gap insulated piston and air gap insulated liner engine
- Air gap insulated piston, air gap insulated liner, ceramic coated cylinder head engine

Ceramic coated engine

- Partially stabilized zirconium of thickness 500 microns is applied on inner side of cylinder head
- Low degree of insulation

Air gap insulated piston engine

The piston is made into two parts-the crown made of low thermal conductivity material is threaded to the body of the piston and the gasket made of low thermal conductivity material is provided in between the crown and body of the piston. Air is bad conductor of heat. The combination of two low thermal conductive materials decreases heat flow to the coolant which results LHR engine

Air gap insulated piston and air gap insulated liner engine

- Insulation is provided in the piston with low thermal conductivity material crown and air gap is provided in between body and crown with gasket
- Insulation is also provided in the liner with low thermal conductivity material insert

Air gap insulated piston, air gap insulated liner and ceramic coated engine

The combination of air gap insulated piston, ceramic coated cylinder head and air gap insulated liner engine results high degree of insulation of LHR engine

Non-edible vegetable oils

- Crude jatropha oil
- Crude pongamia oil

Properties of vegetable oils

PROPERTIES OF THE NON-EDIBLE VEGETABLE OILS AND DIESEL

Test Fuel	Viscosity at	Density at	Cetane	Calorific
	25 ° C	25 ° C	mmber	value
	(ce nti -poise)			(kJArg)
Diesel	12.5	0.84	55	42000
Jatropha oil (crude)	125	0.90	45	36000
Jatropha oil (esterffied)	33	0.87	55	35500
Porgamia oil (crude)	125	091	48	37 100
Pongon is oil (esterified)	50	0.885	55	36980

Jatropha oil

- Botanical Features
- Family- Euphorbicese
- Plant- Jatropha Curcas
- Root System- Taproot System
- Flowers- Inflorescence
- Flowers-Unisexual (Male and Female are separate on the same plant)
- Fruit- 3Seeds
- One kg of fruits- 1300-1400 seeds
- Oil content of seeds- 30-50% by weight
- Solubility of oil- Diesel, hexane slightly soluble in alcohol
- Molecular composition C₂₀ H₂₄ O₃

Availability of JC plant

- Applications other than a Engine fuel in Worldwide
- Thailand- Used for fences and animal cages
- Madagscar- Support for venila plants to keep of certain insects
- o Ghana- Soap Production
- o China- Varnish Production
- o England- Wool-spinning
- o Brazil- Oil Production
- Burma, Indonesia, Malaysia, Philippines,
 Srilanka, Sudan, S-Africa, Venezuela,
 Peru, Afghanistan, Colombia, Jamaica etc.,

Availability of JC plant in India

- Kerala, Rajasthan, Madhya Pradesh, Andhra Pradesh, Karnataka, Tamil Nadu etc,.
- Jatropha Curcas was probably introduced into India by PORTUGUESE in 16th –17th Centuries

Plantation of JC plant

- Agricultural /Watershed Boundary Bunds
- Mixed Crop e.g. with Caster, to improve the soil fertility, to reduce insect attack
- Reforestation Species in Waste lands due to drought resistance
- JEM- Joint Forest Management , a approach for forest regeneration, JC can be incorporated as one of the plant species

Harvesting of JC plant

- 1 kg of fruits- 1300-1400 seeds
- Oil recovery from seeds-21.25%
- Maximum seed yield per plant-(Dry land)- 165 g
- Maximum seed yield per plant
- (Irrigated)- 345 g
- Oil cake- Fertilizer
- Hectare land- 1.5 –2 tones of seeds
- Yielding After 3 years of plantation and continue for next 25 years

Ecological significance of JC Plantation

- Soap making
- Medicinal value
- Fire wood,
- Cosmetics and dye industries
- Cake-Fertilizer
- Fast growing
- ✓ Not grazed by animal
- Easy to propagate by cutting/seed
- ✓ Fixation of CO₂ levels
- Erosion control
- Improves the soil quality
- Highly drought resistance

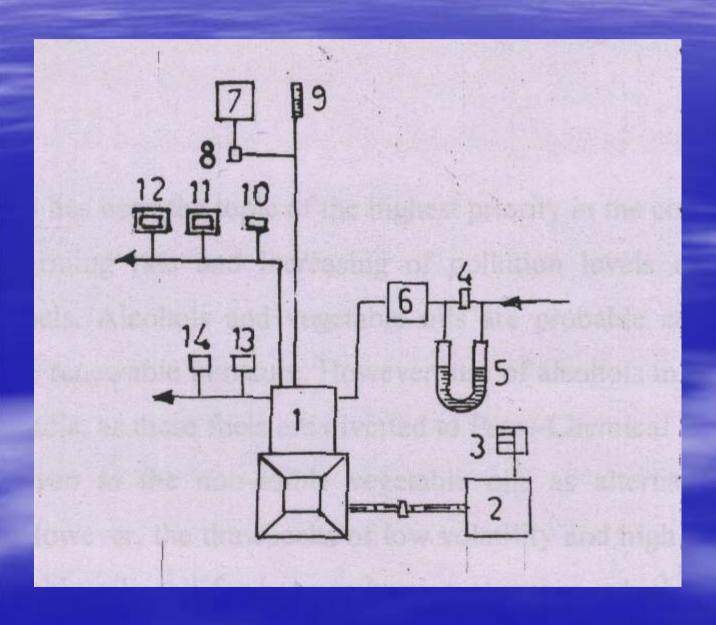
Pongamia oil

- Pongam→ Karanji, a commercial name
- Plant name-Pongamia Glabra Vent
- Yield of kernel per tree- 8-24 kg
- Oil yield per kernel 3027-39%
- Moleculer Composition- C₁₉ H₁₂O₆

Applications

- Raw material for soap manufacturing
- Lather tanning industries
- Curative effect on skin problems
- Cure of bad sores and wounds
- To prevent grains, books, clothes from insect damage with the leaves of the plant

Photographic view of air gap insulated piston



Photographic view of liner

TE.3.2.PHOTOGRAPHIC VIEW OF THE AIR GAP INSULATED LINER

Experimental Programme

Peak BTE

Table-1 Data of Peak brake thermal efficiency (BTE) with different versions of the engine with different test fuels

	Peak Brake Thermal Efficiency (%)									
	Pure Di	eseloper	ation.	Chude	Jatrophy	a oil	Cruide	Porgan	ia oil	
Engine Version		_		operatio	n		operation			
Version	Injectio	n Pressur	e (bar)	hjectio	Injection Pressure (bar)			Injection Pressure (bar)		
			•	-			_	•		
	190	230	270	190	230	270	190	230	270	
CE	28	29	30	24	25	26	25	26	27	
LHR-1	29	30	30 <i>5</i>	285	29	29 5	29	295	30	
LHR-2	285	29.5	30.2	30	31	32	31	315	32	

CE- Conventional engine, LHE-1 Low heat rejection engine- Air gap insulated picton and air gap insulated

LHR-) Low heat rejection engine. Air gap insulated piston, air gap insulated lines with commit- coated cylinder head

line r.

BSEC

I able-7 Data of brake specific energy consumption (BSEC) with different versions of the engine at peak load operation with different test fuels

	Brake Specific Phergy Consumption (k:Wk:W)									
	Pure Die	eelopera	tion	Crude	. Jairoph	a oil	Crunde	Pongan	in oil	
Ergine		-			operation			operation		
Version	Injection	n Pressure	முன்	Injection Pressure (bor)			Injection Pressure (bar)			
V	-3		1r						· 1 r	
	190	230	270	190	230	270	190	230	270	
CE	4.0	3.92	3.84	4.90	4.70	4.65	5.00	4.80	4.70	
LHR-1	4.16	4.08	4.00	3.96	392	3.88	398	394	390	
LHR-2	4.08	4.04	3/96	3.88	3.84	3.76	384	3.76	3.72	

CE- Conventional engine, LHE-1 Lowheat rejection engine. Air gap insulated picton and air gap insulated lines, LHE-3 Lowheat rejection engine. Air gap insulated picton, air gap insulated lines with coramic coasted cylinder head

EGT

Table-3 Data of exhaust gas temperature (EGT) with different versions of the engine at

peak load operation with different test fuels

					_					
	EGT atpeak load (Degree Centigrade)									
	Pure Diesel operation			Crude	Jatroph	a oil	Cruide	Porgan	in oil	
Engine	•			operation			operation -			
Version	Injection	n Pressure	(b ar)	Injection Pressure (bar)			Injection Pressure (bar)			
	190	230	270	190	230	270	190	230	270	
CE	425	4 10	395	515	490	480	525	500	490	
LHR-1	475	460	44.5	465	460	455	475	470	465	
LHR-2	490	475	460	450	44.5	440	460	455	450	

CE-Conventional engine, LHE-1 Lowheat rejection engine. Air gap insulated piston and air gap insulated lines, LHE-3 Low heat rejection engine. Air gap insulated piston, air gap insulated lines with coramic coasted cylinder head.

Volumetric efficiency

Table 4 Data of volumetric efficiency with different versions of the engine at peak load operation with different test fuels

Engine	Volumetric Efficiency (%) Crude Jatropha oil Crude Porgamia oi operation								
Version	Irgection	n Pressume	(bar)	Injection Pressure (bar)			Injection Pressure (bar)		
	190	230	270	190	230	270	190	230	270
CE	85	86	87	79	80	81	78.5	79.5	80.5
LHR-1	78	80	82	76	77	78	75 <i>5</i>	76.5	77.5
LHR-2	76	78	80	78	79	80	74	75	76

CE-Conventional engine, IHE-1 Lowheat rejection engine. Air pap insulated picton and air pap insulated lines. LHE-3 Low heat rejection engine. Air pap insulated picton, air pap insulated lines with ceramic-coated cylinder head

Smoke levels

Table-5 Data of smoke levels with different versions of the engine at peak load operation with different test fuels

	Smobe Levels (Hartridge smoke units, HSU)									
	Pure Die	eelopara	tion	Crude	Jatroph	a oil	Crunde	Pongon	in oil	
Engine		-			operation			operation -		
Version	Injection	n Pressure	(рят)	Injection	ı Pressure	(bar)	Injection Pressure (bar)			
	190	230	270	190	230	270	190	230	270	
CE	48	38	34	68	65	<i>5</i> 8	70	65	60	
LHR-1	55	50	45	63	58	ß	65	60	55	
LHR-2	60	55	50	58	53	48	60	55	50	

CE-Conventional engine, LHE-1 Lowheat rejection engine. Air gap insulated picton and air gap insulated lines, LHE-1 Lowheat rejection engine. Air gap insulated picton, air gap insulated lines with coramic-coated cylinder head

NOx levels

Table-6 Data of NOx levels with different versions of the engine at peak load operation with different test fuels

	NOx Levels (ppm.)									
	Pure Diesel operation			Crude	Jatroph	a oil	Cruade	Pongon	in oil	
Engine	_			operation			operation			
Version	Injection Pressure (bar) Inje				Injection Pressure (bar) 💎			Injection Pressure (bar)		
	190	230	270	190	230	270	190	230	270	
CE	850	890	930	700	720	730	740	750	780	
LHR-1	1300	1280	1260	1245	1230	1180	1265	1235	1200	
LHR-2	1330	1330	13 10	1270	1255	1205	1290	1275	1225	

CE-Conventional engine, IHR-1 Lowheat rejection engine. Air gap insulated piston and air gap insulated lines. LHR-3 Lowheat rejection engine. Air gap insulated piston, air gap insulated lines with ceramic-coated cylinder head.

Conclusions

Vegetable oil operation at 27°bTDC on conventional engine showed the deterioration in the performance, while LHR engines showed improved performance, when compared with pure diesel operation on conventional engine.

Conclusions

- Increase of injection pressure increased efficiency and deceased pollution levels.
 Pongamia oil showed higher peak brake thermal efficiency however, at peak load operation
- It showed deterioration in the performance and increase of pollution levels marginally in comparison with crude jatropha oil operation.