

Austrian Biolueis Institute	e biodiesel standard is compl	sele ex and f	^{ction} cri	^{iteria} no. 1: quality
	pr EN 14214 Fatty-acid-methyl-ester (FA	ME)	22.10.02	
	Parameter	Range	Unit	
	Ester content	≥96.5	%m/m	
N	Density at 15°C	860 - 900	kovim ³	X foundhau
triggered by	Viscosity at 40°C	3.5 - 5.0	mm ² /s	
ever arowing	Viscosity (-20°C)	≤ 48	mm² <i>i</i> s	improvements
den grotning	Flash point	≥110	°C	are necessary
demands in	CFPP	see EN590	°C	are necessary
reducing exhaust	Sulfur content	≤10.0	mg/kg	and can be
omissions quality	CCR / 10% distill. residue	≤ 0.30	%m/m	expected
emissions quanty	Cetane number	≥ 51.0	-	
levels of any fuel	Sulfated ash	≤ 0.02	%m/m	
have to be	Water content \longrightarrow	≤ 0.05	%mg/kg	
increased.	Total contamination	≤24	mg/kg	
Improved	Copper corrosion (3h at 50°C)	class 1	rating	
continuously	Oxidation stability	≥ 6.0	h	
	Thermal stability	?	h	
	Storage stability			
	Acid number	≤ 0.50	mg KOH/g	
- and process	Iodine number	≤120	-	
An also allo mulhan An	Polyunsaturated methyl esters: C 18:4 +	≤ 1.0	%m/m	
technology has to	Linolenic acid methyl ester	≤12.0	%m/m	
meet the new	Methanol content	≤ 0.20	%rn/m	
challenges	Monoglyceride content	≤ 0.80	%m/m	
chaneliges	Diglyceride content	≤ 0.20	%in /m	
	rigiyceride content	≤ 0.20	7%rn /m	
	Free glycerol	≤ 0.02	%nn/m	
	Total givcerol →	≤ 0.25	76rD/m	
	Group I metals (Na/K)	≤ 5.0	mg/kg	
	Bhaamhama aantant	≤ 5.0	mg/kg	
	Phosphorus content	≤10.0	тgжg	

and the	e blodiesel 1	uel stand	ard is	getting mo	ore strict!	-
Parameter	Test	Unit		EN 14214	new plant	Optional
acid value	EN 14104	mg KOH/g	max.	0.50	0.213	0.213
water content	EN 12937	mg/kg	max.	500	260	145
total contamination	EN 12662	mg/kg	max.	24	10	5
free glycerine	EN 14105	%(m/m)	max.	0.02	0.01	0.001
monoglycerides	EN 14105	%(m/m)	max.	0.80	0.51	0.42
diglycerides	EN 14105	%(m/m)	max.	0.20	0.19	0.15
triglycerides	EN 14105	%(m/m)	max.	0.20	0.05	0.05
total glycerine	EN 14105	%(m/m)	max.	0.25	0.16	0.14
Alkali content (Na+K)	EN 14108(9)	mg/kg	max.	5	1.4	0.73*
Alkali content (Ca+Mg)	prEN 14538	mg/kg	max.	5	< 0.5	< 0.93*

	Advanced vehicle fuel systems :
1.	Trends in vehicle fuel systems:
	* more precision,
	* higher pressures,
	* higher flow rates,
	tolerances
2	leading to
۷.	* higher fuel efficiency
	* lower fuel consumption and
	* lower emission levels,
3.	requiring
	* cleanest, high quality fuels with reduced
	* particles in hardness, size, number,
	* free water content

Austrian Biofuels Insti	itute dieseLat				what is	the "idea	12 4 .				
	Selection	n of blen	ids needs	s careful	conside	ration	^{DIOdies}				
	Fatty Acid pattern - selected oilseeds:										
nfluencing criteria:	FA in %	00-rape	HO-sun	palm	coconut	jatropha	HEAR				
	8:0				6						
1. Chain lan atha	10:0				5						
Trade-off	12:0				49						
between	14:0			1	18						
energy and	16:0	4	3	42	9	13	3				
oxygen content	18:0	2	4	5	3	6	1				
oontont	18:1	60	91	41	7	38	18				
2.	18:2	21	3	11	2	42	13				
High level of	18: 3 —>	11				0	6				
leads to high	20:1						9				
instability	22:1	1					49				
	total sat.	7	7	48	91	19	5				
Stability	lodine-no.	117	84	54	9	106	106				
	oxygen %	10,8	11	11,3	14,4	11	9,9				
Winter operability	CFPP °C	- 7°		+ 11°							

ustrian Biofuels	selat							a	all the world's of				^{ed} by			
Can	we f	in	d t	he	ic	lea	l f	att	y a	aci	d	pro	ofi	le '	?	iseed.
FAME	Labornr:	C 8:0	C 10:0	C 12:0	C 14:0	C 16:0	C 18:0	C 20:0	C 22:0	C 24:0	C 18:1	C 22:1	C 18:2	C 18:3	Gesamt:	lodine Va
Coconut Fat - ME	05-308	7,0%	5,7%	42,4%	18,1%	11,3%	4,2%				8,7%		2,5%		100,0%	11,8
Acrocomia Nut Oil - ME	04-358	5,4%	4,5%	38,2%	8,8%	8,2%	3,3%				27,9%		3,6%		100,0%	30,2
Palm Fat - ME	05-141		1		1,3%	44,7%	5,4%	0,5%			37,2%		10,8%		100,0%	50,8
Lard - ME	04-319			0,4%	2,3%	29,6%	20,0%				33,2%		13,1%	1,5%	100,0%	55,0
Animal Fat - ME	05-107				2,3%	29,8%	17,1%				37,7%		11,5%	1,7%	100,0%	56,8
HO Sunflower Oil - ME	05-102					5,2%	4,2%		2,0%		78,7%		10,0%		100,0%	84,9
Soy Oil - ME HighOleic	05-710					5,4%	4,1%				81,3%		3,8%	5,3%	100,0%	90,4
Jatropha Oil - ME	05-728					17,7%	7,9%				37,8%		36,6%		100,0%	95,9
Used Frying Oil - ME high visc.	05-344					16,5%	5,9%	0,9%	1,2%		40,9%		26,8%	7,9%	100,0%	102,1
Canola Oil - ME	05-693					5,6%	2,4%	1,0%	0,8%		63,6%		23,4%	3,2%	100,0%	103,6
Used Frying Oil - ME low visc.	05-339					14,3%	5,0%	1,0%	1,2%		41,6%	0,8%	27,4%	8,8%	100,0%	106,8
Soy Oil - ME MidOleic	05-709	1				11,1%	5,0%	0,6%	0,9%		43,7%		35,5%	3,1%	100,0%	107,1
Rapeseed Oil - ME	05-333					6,0%	2,4%	0,9%			59,3%		28,6%	2,7%	100,0%	107,8
Milk Thistle Oil - ME	05-178					10,0%	6,2%	4,1%	3,9%	1,2%	22,7%		50,7%	1,2%	100,0%	110,4
Rapeseed Oil - ME	05-330	1				6,9%	2,5%	1,0%	0,8%		58,0%		20,9%	9,8%	100,0%	111,8
HEAR OIL - ME	05-093					4,3%	1,2%	0,9%	1,0%		14,0%	47,2%	15,5%	15,8%	100,0%	114,4
Rapeseed Oil - ME	04-260					6,3%	2,3%	0,9%			57,9%		22,2%	10,4%	100,0%	115,4
Rapeseed Oil - ME	05-348	1				5,7%	2,3%	0,9%	0,7%		57,1%		22,7%	10,5%	100,0%	115,9
Soy Oil - ME LowLin	05-701					12,1%	6,1%	0,5%	0,7%		24,2%		54,9%	1,5%	100,0%	119,8
Sunflower Oil - ME	05-078					8,0%	4,7%		1,2%		28,9%		56,5%	0,7%	100,0%	124,6
Soy Oil - ME	05-314	1				13,0%	4,9%	0,5%	0,8%		23,9%		49,6%	7,3%	100,0%	125,5
Rapeseed Soy Oil-ME	05-108	1				12,3%	5,6%		0,7%		22,1%		52,1%	7,3%	100,0%	128,3
Soy Oil - ME Regular	05-700	1				12,5%	5,2%				22,3%		50,2%	9,8%	100,0%	131,8
Camelina Oil - ME	04-321	1				6,7%	3,0%	2,3%	0,7%		14,3%	6,5%	18,2%	48,4%	100,0%	175,0
Linsood Oil - ME	05-166	1				61%	4.6%				17.5%		15.9%	55.9%	100.0%	188.9

on progress !	there i	s plen	ty of c	hoice	e amo	ng bio	diesel	proce	ss sup	pliers
workin	Yield: % of	high	Ability	Reference plants	Required acreage for	Plant sizes				
Process technology company	triglycerides and FFA 1)	0 % Fully refined oil	<1% De- gummed oil	< 2	< 5 %	< 10 % Recycled oils and fats	> 10 % Render- ing fats	in operation / firm orders approx.	unit in m²	/ ordered in 1.000 t / y
AT-Agrartechnik	96 - 97	yes	n.a.	n.a.	yes	no	no	4/26	n.a.	53 - 75/ 250
Axens	n.a.	yes	no	no	no	no	no	1/2	n.a.	160/ 165
BDI	99	yes	yes	yes	yes	yes	yes	9/11	n.a.	5 – 50/ 100
Christof MB	102 ²⁾	yes	yes	yes	yes	yes	yes	4/5	n.a.	5 – 30/ 250
Crown	n.a.	yes	n.a.	n.a.	n.a.	no	no	n.a.	n.a.	n.a./ 250
Desmet Ballestra	n.a.	yes	n.a	n.a	n.a	n.a	no	7/38	n.a.	100/ 250
Energea	99	yes	yes	yes	yes	yes	yes	3/ n.a.	1.190	40 - 250
Lurgi	95 - 97	yes	yes	yes	yes	n.a	n.a	7/14	n.a.	40 - 100/ 200
Westfalia	95 - 97	yes	n.a.	n.a.	no	no	no	3/ n.a.	n.a.	100 - 120/

