

- Status of biofuels development
- Policy Issues/Biofuels Strategy
 - Blending Ratios
 - Technical Specification Standards
 - Production/ Distribution Networks
 - Technical, Social and Environmental Considerations
 - Incentives
- Institutional and Regulatory Arrangements
- Conclusions

Blending Ratios

Biodiesel

- The factors influencing blending ratios are; Application of biodiesel either in furnaces and boilers, on one hand, or diesel engines and manufacturing warrants considerations on the other.
- Based on these considerations the following blending ratios are recommended:
- B5 for those vehicles with diesel engines under manufacturer's warranty considerations
- B20 for those vehicles without warranty considerations
- B100 for use in boiler and furnaces, and other robust engines such as tractors and stationary engines to include hammer mills diesel electric plants etc.

T	echnica	Specs/	Standards
0	Fuel ethanol Sta	andards for Brazil	
	Characteristics	AEAC(Anhydrous)	AEHC(Hydrous)
1	Appearance	Clear and free of suspension matter	
2	Total acids, as acetic acid (30p.p.m.) (30p.p.m.)	30 max 30 max	
3	Electricity conductivity	500 max	500 max
4	Chlorides, as Cl. (1 p.p.m)	-	1 max
5	Sulphate, as SO4 (4 p.p.m)	-	4 max
6	Specific gravity at 20° C, (at point of production)	791.5 max	809.3±1.7
7	Specific gravity at 20 °C, denatured with 3% v/v gasoline	(a point of sale)	808.0±3.0
8	Material non-volatile at 105°C, (at point of production)	30 max (30 p.p.m)	30 max (30 p.p.m)

	echnical	Spec	s/ Standards
9	Copper, as Cu, (0.07 p.p.m)	0.07 max	
10	Iron, as Fe. (5 p.p.m)	-	5max
11	Sodium, as Na. (2 p.p.m)	-	2max
12	Acidity/Alkalinity	-	7.0±1.0
13	Residue on evaporation, (at point of sale)	-	50 max (50 p.p.m)
14	Ethanol content, (at point of production)	99.3 min	93.2 ±0.6
15	Ethanol content, when denatured with 3% v/v gasoline(at point of sale)	-	92.6 to 94.7
16	Gasoline content, (at point of sale)	-	30 max

Technical Specs/ Standards	Techn	hnical	Specs/	Standa	rds
-----------------------------------	-------	--------	--------	--------	-----

r. No	Characteristics	Units	Specifications
	Color	-	Colorless
	Appearance		See Note 1
	Total acids as acetic acids	Mg/100mL	3.0
	Electricity conductivity	S/m	500
	Density at 20 °C	Kg/m ³	791.5
i	Ethanol concentration, min	%v/v	99.5
	Ethanol concentration, min	°INPM	99.5
	Chloride content, max	mg/kg	0.03
	Non volatile material, max	mg/kg	0.010
0	Copper content, max	mg/kg	0.070
1	Alkalinity	-	Negative
2	Water content, max	% w/w	Negative
13	Residual solids, max	mg/100mL	5.0

Technica	Specs/	Standards
-----------------	--------	------------------

	Taple 4:		Stanuarus	101	IIIuic
--	----------	--	-----------	-----	--------

SPECIFICATION	IS 321-1964 (GRADE-2)
Ethanol% v/v	99.5
Appearance	Free from suspended or precipitated contaminants (clear and bright)
Vater content, % v/v	Less than 0.2%
Boiling point deg C	78 ± 0.7
Existing gum max. mg/100ml	5
Chloride ion content max	40 ppm
Copper content max. mg/kg	0.1
Acetic (as acetic acid) max. mg/litre	0.007
	·

Technical Specs/ Standards

 Table 5: Fuel ethanol Standards for USA

No	Characteristics	
1	Ethanol volume %, min	92.1
2	Methanol, volume%, max	0.5
3	Solvent washed gum, mg/100mL, max	5.0
4	Water content, volume %, max	1(note1)
5	Denaturant content, volume %, min	1.96
6	Volume %, max	4.76
7	Inorganic chloride content, mass ppm (mg/L), max	40 (32)
8	Copper content, mg/kg, max	0.1
9	Acidity (as acetic acid CH3COOH), mass % (mg/L), max	0.007(56) (note 3)
10	pH	6.5 to 9.0
11	Appearance: Visibly free of suspended or precipitated contaminants	Clear and bright

Fechnica	I Spec	:s/ :	Stan	dards
INDENI Petroleum	Refinery Comp	any		
IND	ENI REFINERV STANDARI	05		LOCAL FACILIT
ANALYSIS	TEST METHOD(S)		LIMITS	TEST RESULTS
		MIN	MAX	
Specific gravity @15/4°C	ASTM D 1298	0.82	0.87	0.8808
Appearance	Visual	Clear	Clear	Clear
Flashpoint PM, close cup °C	ASTM D 93	60.00		>150
ASTM color	ASTM D 1500		3.5	0.8
Cloud point °C	ASTM D 2500		4.5	
Cetane index calculated	ASTM D 976	50.00		46.97
Kinematic Viscosity @ 40 °C	ASTM D 445	2.00	5.50	5.47
Total sulphur %m/m	ASTM D 2622/D129		0.75	0.029
Copper corrosive number, 3hrs @ 100 °C	ASTM D 130		1	
Conradson Carbon Res 10% bottom, %m/m	ASTM D 524		0.15	
Ash, %m/m	ASTM D 482		0.01	
Water, %Vol	ASTM D 95		0.05	
Sediments, %Vol	ASTM D 1796		0.01	

Technical Specs/ Standards

Total Acidity, %Vol	ASTM D 664	1.00	
ASTM DISTILLATION	ASTM D 86		
I.B.P °C	"		92
5 % Vol Evaporated @ °C	**		182
10 % Vol Evaporated @ °C	**		305
20 % Vol "	**		319
30% Vol "	**		323
40 % Vol "	**		323
50 % Vol "	**		324
60 % Vol "	**		324
70 % Vol "	**		324
80 % Vol "	**		340
90 % Vol "	**		340
95 % Vol "	**		340
E. B.P °C	**		
% Vol Evaporated @ 240°C ml	"		
% Vol Evaporated @ 310°C ml	"		

Technica	Specs	s/ Stan	dards
	Biodiesel, B100,	Specification	
Property	ASTM Method	Limits	Units
Flash Point	D93	130 min.	Degrees C
Water & Sediment	D2709	0.050 max.	% vol.
Kinematic Viscosity, 40 C	D445	1.9 - 6.0	mm ² /sec.
Sulfated Ash	D874	0.020 max.	% mass
Sulfin	D5453	0.05 max.	% mass
Copper Strip Corrosion	D130	No. 3 max.	
Cetane	D613	47 min.	
Cloud Point	D2500	Report	Degrees C
Carbon Residue 100% sample	D4530**	0.050 max.	% mass
Acid Number	D664	0.80 max.	mg KOH/gm
Free Glycerin	D6584	0.020 max.	% mass
Total Glycerin	D6584	0.240 max.	% mass
Phosphorus Content	D 4951	0.001 max.	% mass
Distillation Temp, Atmospheric Equivalent Temperature, 90% Recovered	D 1160	360 max.	Degrees C
 To meet special operating agreed upon between pur The carbon residue shall be A considerable amount of fiel (B20). Although bio. 	conditions, modifications of chaser, seller and manufact be run on the 100% sample experience exists in the US fiesel (B100) can be used, l	findividual limiting requi urer. s with a 20% blend of bio olends of over 20% biodi	rements may be odiesel with 80% dies esel with diesel fuel

Technical Specs/ Standards

Standard/Specification		Unit	EU EN 14214	Australia
Date			July 2003	September 03
Application			FAME	FAME
			automotive	
Density	15°C	kg/m ³	860-900	860-890
Kinematic	20°C	m me/s	-	-
Viscosity	40~	m m=/s	3.50-5.00+10	3.5-5.0
	LB.P.	~	-	-
Distillation	596	°C	-	-
	595 %	-C	-	≤ 36079096
and the second sec	250°C	95	-	-
Distillation	33070	9%		
Flashooint	370 C		> 120	> 120
CEPP		~		TR 0 + 16
Pourpoint	sum/winter			- Long
Cloud point			-	-
Total Sulfur		% mass	< 0.0010	< 0.005/0.001+7
CCR	100.96	95 mass		≤ 0.050
	10%	% mass	≤ 0.30+17	or = 0.30
Sulfated ash		% mass	s 0.02	s 0.020
(Oxid) Ash		% mass	-	-
Water cont.		ma/ka	≤ 500	-
Total contamination		mg/kg	≤ 24×18	≤ 24
Water & Sediments		% vol.	-	≤ 0.050
Cu-Corresion	3h/50°C		class 1	≤ No. 3
Cetane No.		-	≥ 51	≥ 51
Acid value		mgKOH/g	< 0.50	≤ 0.80
Oxidation	IP 205	g/cm2		-
Stability	ISO 12205	g/cm²	-	-
	EN 14112	ь	≥ 6.0	26
Thermal stability			-	-
Storage stability			-	-
Methanol content		% mass	\$ 0.20	≤ 0.20
Saponincation		mgkOH/g	> 06 5	> 0.5 5
A destruction of the second second		20 00.055	× 0.00	
Diabasarida		26 m ass	S 0.80	-
Trickceride		96 mass	= 0.20	_
Engly Certale		96 mass	= 0.020	= 0.020
Total glycerol		25 mass	≤ 0.25	≤ 0.250
lodine No.			< 120	
Linolenic methyl ester		% m/m	≤ 12.0	-
Polyunsaturated	≤4 doub.b.	2% m/m	1-12	-
Phosphorus content		mg/kg	≤ 10.D	s 10.0
Alcaline metals	Na + K	mq/kg	< 5.0	< 5.0
Alcaline metals	Ca + P	mg/kg	≤ 5.0	< 5.0
Net calorific value		MJ/kg		-
-10 if CPPF is _20°C or lower, the vision 12 AST M D 1160 shall be used to ob- 16 Paralling dividepment of a suitable 19 Suitable test method to be develop 22 like deset fuel	ny measured at -20°C shall re- tain the 10% distillation resid method, BN 12002 shall be c and	nt exceed 48 mm²as ar ised		

Distribution Networks

General Characteristics

 It is advisable that biofuels processing plants have to be situated around main feedstock producing areas, and be supported by a satisfactory road and transport infrastructure. Similarly, a good road and transport (both road & rail) infrastructure is required to transport biofuels from processing plants to distribution points. Location of distribution points will largely be influenced by blending philosophy adopted.

Distribution Networks

- Blending points and distribution networks will depend on the policy of using ethanol to substitute lead based additives, as an octane enhancer for gasoline at INDENI. Assuming this policy is accepted, it is recommended that the fuel ethanol to be produced from the processing plant in Mazabuka/ Kafue will be transported to INDENI in Ndola. Adjacent to INDENI, the processing plant will require construction of a storage depot for supplying fuel ethanol to INDENI for blending purposes.
- It is further recommended that fuel ethanol produced from this proposed facility and any other plants to be established in Zambia be blended at site, at any Oil Marketing Company's (OMC's) depots or filling stations- straight from the plant. The fuel blended will then be transported to their respective dealers. In this case OMCs will be encouraged to install special filling pumps for the blend.

Technical, Social and Environmental Considerations Ethanol

- Environmental concerns likely to be associated with ethanol production and use arising during feedstocks production, processing, transportation and marketing will be addressed under the Environmental Protection and Pollution control Act of 1990.
- Required feedstock surplus does not pose a challenge for land required for both food production and energy crops, as it exists.
- In addition, Zambia has reasonable adequate rainfall for supporting expanded sugar cane production. Sweet sorghum as a complementary feedstock has even a better advantage, since it can be grown in drier parts of the country.

Technical, Social and Environmental Considerations Ethanol

- Besides Ethanol is an excellent oxygenate and octane enhancer and is a good additive for phasing out lead and other toxic octane boosters like benzene, aromatics, MTBE etc.
- In addition, it has high octane number that improves engine performance, and has low sulfur content.

Technical, Social and Environmental Considerations Ethanol

- However, during processing, an area of concern is production of stillage.
- Stillage however, can be processed during bio-methane process to biogas which can be used in boilers for producing either process steam or electricity.
- The by-product in slurry form can be used as a fertilizer in the fields.
- During transportation, it is important that the alcohol is denatured to remove the alcoholic flavour
- Although ethanol is more biodegradable than gasoline, it is important all stringent precautions and safety standards applied to gasoline during handling and storage are also applied to ethanol

Technical, Social and Environmental Considerations Biodeisel

- Biodiesel has a reasonable cetane number that enhances engine performance and good lubrication that reduces wear and low content of sulfur. It has similar advantages like ethanol with regards to GHG reduction.
- During the esterification process, the major by-products are crude glycerol and fertilizer. Glycerol can be sold to manufacturers where it is distilled to make various grades of glycerine.
- Care should be taken during recovery of methanol to avoid spillage. Since methanol is highly flammable, special procedures have to be taken during handling, transportation and storage.
- Although flash point of biodiesel is higher than fossil diesel, it should be treated in the same way as petroleum products, by following fire hazards and other safety measures like is in the case of diesel.

INCENTIVES

General criteria

- Incentives on biofuels will be granted based on the following general criteria.
 - 1. The production price as far as possible has to be within a reasonable margin of CIF Ndola international prices for ethanol sold to INDENI.
 - 2. Pump prices for biodiesel and ethanol sold to OMCs and dealers should be between 5% and 10% below prevailing prices for fossil diesel and gasoline.
 - 3. The feedstock to be used for producing biofuels has to be grown locally at reasonable cost.

- For scenarios from Figures 3 to 9 the following incentive options were considered
- i) All taxes included without reduction
- ii) 50% reduction on all taxes (road tax, excise duty, and VAT)
- iii) 75% reduction on all taxes.
- iv) Ethanol direct to dealer with 50% reduction on all taxes
- v) Ethanol direct to dealer with 75% reduction on all taxes.

INCENTIVES

Biodiesel

At prevailing crude oil price of US\$ 70 per barrel

- i) Biodiesel production price of US\$0.60 per litre with all taxes is viable and therefore no incentives needed.
- ii) Biodiesel production price at US\$ 0.70 per litre is viable at 50% and 75% tax reduction
- iii) Biodiesel at selling price of US\$ 0.80 per litre is viable at 50% and 75% tax reduction
- iv) Biodiesel vegetable oil (imported) with duty selling price is not viable at all.
- v) Biodiesel vegetable oil (imported) without duty is viable at selling price of US\$1.00 with 75% reduction on taxes.
- vi) Biodiesel soybean without cake is not viable at all.
- vii) Biodiesel soybean with cake is not viable at all.
- ix) Biodiesel from groundnuts and cotton seeds are not viable in view of their higher O&M costs than soybean.

INCENTIVES

Ethanol

At prevailing crude oil price of US\$ 70 per barrel

- i) Ethanol at selling prices of US\$ 0.20, 0.30, 0.40 and 0.50 per litre to INDENI is viable.
- ii) Ethanol sold to the dealer at prices of US\$ 0.20, 0.30, 0.40 and 0.50 per litre is viable
- At prevailing crude oil price of US\$ 40 per barrel and below
- i) Ethanol is only viable at selling prices of US\$0.20 and US\$ 0.30 per litre when sold to INDENI
- ii) Ethanol sold straight to the dealer through OMCs is viable at selling prices of US\$ 0.20 and US\$0.30 per litre, and hence do not need incentive, whilst US\$0.40 and US\$0.50 are viable at 50% reduction on all taxes
- iii) Ethanol sold straight to dealer is viable at US\$0.20, US\$0.30, US\$0.40 whilst US\$0.50 is only viable at 50% tax reduction

Institutional and Regulatory Arrangements

Institutional and Regulatory arrangements

- It is being proposed that technical issues contained in the biofuels development framework be handled by existing institutions and regulatory authorities.
- It is being proposed that the blending issues and technical specifications/ standards be issued under the ERB Act. Environmental issues are to be handled under the Environmental Protection and Pollution control Act of 1990.
- Incentives on biofuels could be handled under the incentive provision of the Ministry of Finance and National Planning.

