

Integrated waste management using biogas in a decentralised Municipal framework

COMPETE & RE-Impact Workshop 'Bioenergy for Rural Development in Africa and Asia'

Congress Centre, Hamburg, Germany 30 June 2009

Greg Austin

- Introduction to project
- Municipal and social context
- System process
- System details
- Benefits
- Practical challenges
- Conclusions

- The country faces a range of substantial challenges:
 - Housing
 - Water
 - Energy
 - Wastewater
 - Unemployment
- New government has reorganised departments, presenting new efficiencies and opportunities, e.g.:
 - Rural development (new)
 - Energy (separate now from Minerals)
 - Environment & Water
- Delivery services to the unserviced takes up the bulk of the budget reduced maintenance on existing infrastructure
- Local authorities are at the frontline as it relates to service delivery
- This project is an example of one Municipality trying an alternate service delivery mechanism, that addresses the challenges directly

Social context

- Cato Manor is a low-income suburb in Durban, South Africa
- The area was initially occupied by a predominantly Indian population up to the 1960's
- The notorious Group Areas Act displaced the Indians to the township of Chatsworth – the land was left idle for several decades
- In 1994, the need for housing for blacks and Indians became an issue that required urgent attention
- Many blacks from the rural areas and the Indians who were displaced during apartheid era laid claim to the land
- The city decided that both groups should be accommodated and the area was divided and low cost housing was built for both the Indian and black communities
- There was much tension initially especially when blacks tried to forcefully occupy houses that were built for the Indian community. This tension has eased considerably over the years.

Neighbourhood

- Cato Manor is one of five Area Based Management (ABM) precincts identified by the eThekwini Municipality (Durban) for addressing social, economic and spatial development needs and priorities
- In the formulation of an appropriate response to unemployment and the need to improve the socioeconomic status of Cato Manor residents, the ABM has developed a multi-culture programme that seeks to involve community members in urban agricultural initiatives
- The programme involves a considerable amount of investment in infrastructure and programme development

- The eThekwini Municipality through their Cato Manor ABM Branch is currently developing this site to accommodate aquaculture, poultry farming, mushroom farming, organic fruit and vegetable farming initiatives, etc
- Through various innovative techniques, the agricultural systems are being developed with a view to achieve maximum benefits from each site
- The Cato Manor project has been established as a registered Co-operative, with community members being members of the Co-op
- The investment in the facilities owned by the Co-op is being made by eThekwini Municipality

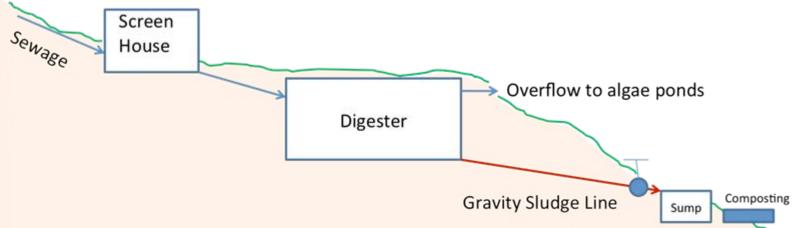
- The objective of the project is to investigate integrated waste management with the benefit of energy production, aquaculture and food in a municipality
- This would help turn a waste disposal and treatment problem into a much needed resource within the municipal border.

- The project focuses on closing ecological loops within an agricultural context
- At Cato Manor, there are 15 ha of land set aside for agricultural/food security activities - not all the land is suitable for agriculture
- There is no natural water supply and a bore hole was sunk to access water for irrigation
- The quality of the water was unsuitable as it was high in aluminum.
- Potable water for irrigation was not an option due to the cost.
- It was decided to pursue the option of installing a biogas digester.
- The initial feasibility started some three years ago when AGAMA Biogas was engaged in the project

- The project involves intercepting the municipal sewer, installation of a biogas digester as first stage treatment, followed by algae raceways as a second stage treatment, followed by aquaculture ponds as a third stage treatment, with the final discharge water being used for irrigation and food production.
- The digester will process the effluent flow from a sewage line that traverses the agricultural site.
- A multicultural zero waste layout for the site will maximize the use of the site with intensive agricultural activities including aquaculture, free range poultry, gourmet mushrooms, honey, fruit and vegetables.
- The treated water from the digester will flow into a series of algae & aquaculture tanks
- After the water exits the last of the tanks, it will be pumped to a panned reservoir that has a capacity of 150,000 litres and then be gravity fed to the crops below

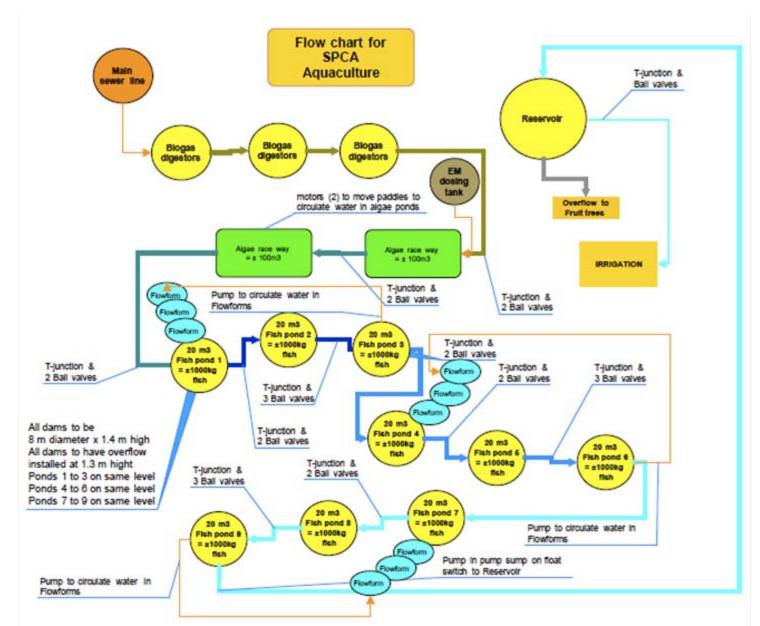
View of project site

Digester details



- The digester is of a hydraulic slab design and has a reactor volume of 288 m³ with two reactor chambers
- The finished top slab is available for later utilisation for example as a community netball court
- The digester is designed to co-digest different substrates, not just the sewage
- It is anticipated that the digester will also biodegrade food wastes from the community, chicken manures from the on-site chicken production, water hyacinth from municipal waste collections and fish manures from the downstream aquaculture ponds, amongst other organic substrates
- The connection between the sewer and the biogas digester has an inlet screen separator, which ensures that no foreign nonbiodegradable objects enter the digester
- The two digester chambers have sludge removal devices operating under gravity to discharge sludge periodically to a composting pit, for further nutrient addition to the food production areas

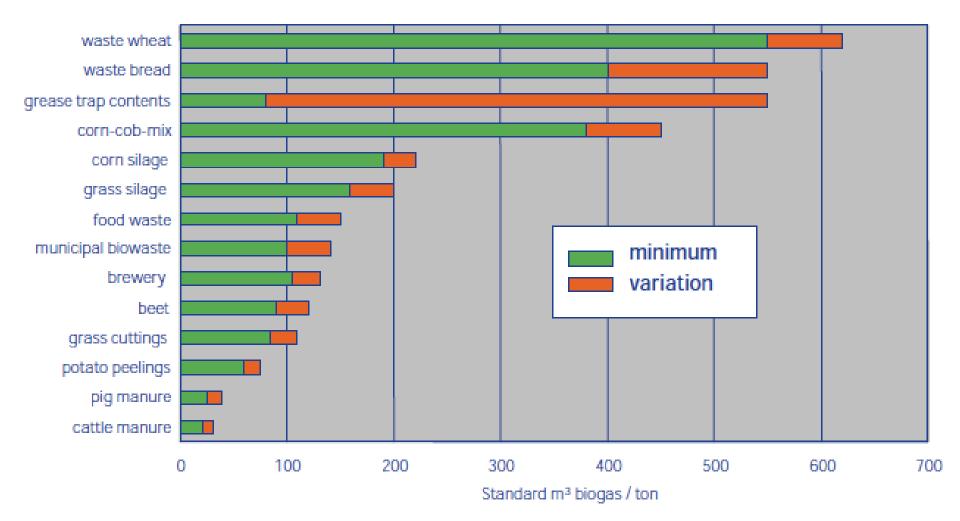
Digester schematic



- Peak sewage = 70 m³/day
- Digester volume = 288 m³
- Sludge removed periodically, composted
- Supernatant flows to algae ponds

Process schematic

System layout



- There is no current clear plan for the use of the biogas
- Options include direct use in the community for cooking, or electricity generation
- Decision rests on degree of utilisation of the digester

	Biogas from 200 HHs	LPG r	eplacement	Electricity			
	m3/day	kg	HHs cooking	kW	kWh	HHs	
Sewage only	6	2.6	26	0.4	10.2	1	
Sewage + HH food waste	26	11.2	112	1.8	44.2	4	
Sewage + HH food waste + other biodegradable wastes	326	140.2	1402	23.1	554.2	55	

CATO MANOR AQUACULTURE

Calculations: Supply the info required in the green blocks, and enter to see how it changes the profitability/loss:

Assumptions: Water kept at 28°C, harvest weekly, Optimal feed application.

PLEASE NOTE: the variables at this stage are: price of complete system, supply of fingerlings, electricity consumption and skill level of labour. Calculations below are for a 'state of the art' intensive system. At Cato Manor we have proposed 3 times the vollume of water, so can expect a greater return than indicated below, over time. Calculations are per site, i.e.we will have two pilot sites, Nsimbini and SPCA

							1		
Final weight of fish (g)		450	g				Monthly costs:		
Food Conversion Ratio			kg feed per	kg fish pro	duced		Feed	R	36,494.73
Volume of system		250					Fingerlings	R	24,000.00
Stock per month		15000					Electricity	R	2,209.68
Price per fingerling	R	1.60	ea				Labour	R	6,000.00
Feed fed (per day)		1.90%	of total mas	s in system			Repayment	R	11,305.00
Feed price (per kg)		R 4.20	kg ⁻¹				Transport	R	7,695.00
Electricity cost per month	R	2,209.68	31	24	6.6	R 0.45	-		
			days/mo	hrs/day	kW used	R/kWh			R 87,704.41
Labour cost	R	1,500.00	p.m.						
Labour required		4					Income: Monthly	R	115,425.00
Price of system	R	969,000.00							
Interest rate		8%					Gross profit(Monthly)		R 27,720.59
Repayment period			years						
Monthly repayment (approx)	R	11,305.00							
							Monthly production, kg		6412.5
Weight of fish in system (kg)		6412.5			4 months		Annual production,kg		76950
(at harvest)		3870			3 months				
		2295	153		2 months		Size of fingerlings required, g/each	1	54
		1365		g	1 month				
		810	54	g	just stocked	1	Annual turnover	R	1,385,100.00
Price per kg (fry)	R	29.63					Gross profit	R	332,647.03
Mass (max) in system		14753		59.01	kg/m ³		Profit margin		24%
Cost of feed (month)		R 36,494.73					Production cost/kg		R 13.68
Amount feed per month		8689							
feed per day (ave)		280.3	kg						
Transport (per kg)	R	1.20							
Fish sold at:	R	18.00	/kg						

Water sump

- Local community politics
- Local unskilled employment
- Project champion
- Municipal capacity
- Contracting environment

- Practical demonstration project aimed at alternate service delivery
- Exciting project to demonstrate a closed ecological system for multiple benefits
- Practical challenges exist
- Benefits will be measured by eThekwini
- Cost-benefit and social impact analyses must be done

Greg Austin greg.austin@agama.co.za www.agama.co.za +27-21-7013364