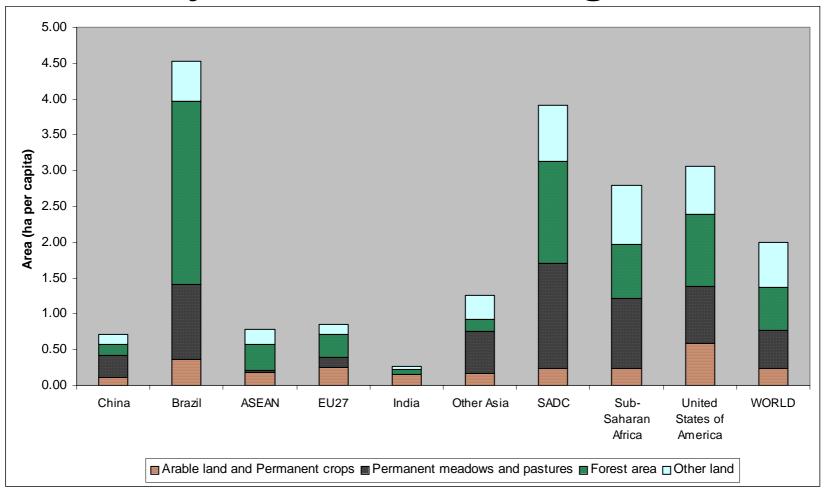
Sustainable Biofuels Criteria in the EU Renewables Directive: some issues relevant for African biofuels development

COMPETE project meeting
Arusha, Tanzania
18 June 2008

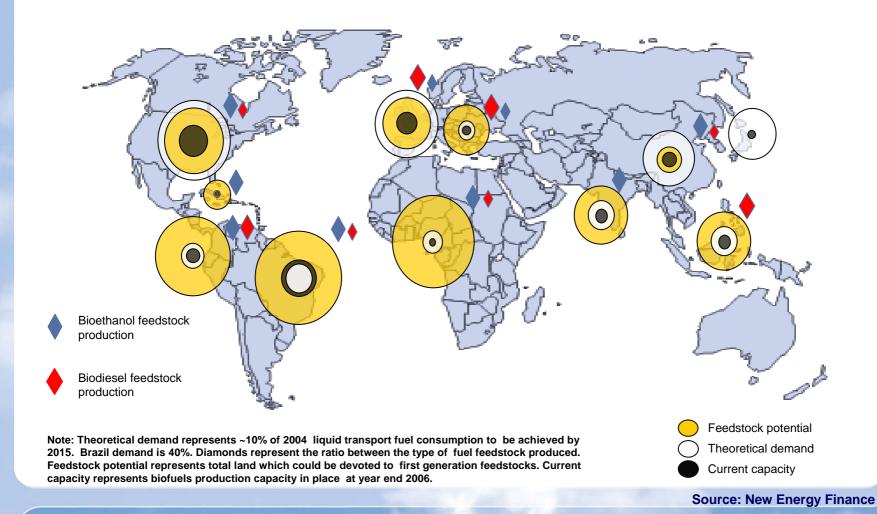
Francis X. Johnson, Research Fellow, Energy and Climate, SEI

Key elements of the proposed EU Renewables Directive related to biofuels


- Binding 10% share of **renewable fuels** for transport
- Biofuels must meet sustainability criteria in order to qualify under the 10% share
- Minimum GHG reduction 35% proposed by EC
- Establishes "no-go" areas: undisturbed forests, nature reserves, bio-diverse grasslands, wetlands
- Requirements at filling stations availability, labelling
- Biofuels from wastes or ligno-cellulosics to count 2x
- Methodology Equation + Default values for GHG emissions
- Interest from several Parliamentarians to add provisions/incentives for biofuels from "degraded" lands

What share of biofuels will EU import in the future vs. EU production? – realising domestic EU potential requires 2nd generation

1st generation only						2nd generation			
		EU15+	EU12	Ukraine	Total	EU15+	EU12	Ukraine	Total
ARABLE	Baseline	1.5	2.1	2.3	5.9	2.3	3.2	3.4	8.9
land	Low	1.3	2.1	2.3	5.7	2.0	3.2	3.4	8.6
	High	1.8	2.5	2.6	6.9	2.8	3.8	3.8	10.4
PASTURE	Baseline	Not used				Not used			
	High	Not used				1.3	1.0	0.8	3.1
TOTAL	High	1.8	2.5	2.6	6.9	4.1	4.8	4.6	13.5


Source: Fischer et al, 2007

Land area per capita by type and major countries or regions

Source: FAOSTAT, 2008

Biofuels Supply and Demand Markets

Current Methodology Equation for calculating GHG emissions for biofuels

$$E = e_{ec} + e_{l} + e_{p} + e_{td} + e_{u} - e_{ccs} - e_{ccr} - e_{ee},$$

where:

E =total emissions from the use of the fuel;

 e_{ec} = emissions from the extraction or cultivation of raw materials;

 e_i = annualised emissions from carbon stock changes caused by land use change;

 e_p = emissions from processing;

 e_{td} = emissions from transport and distribution;

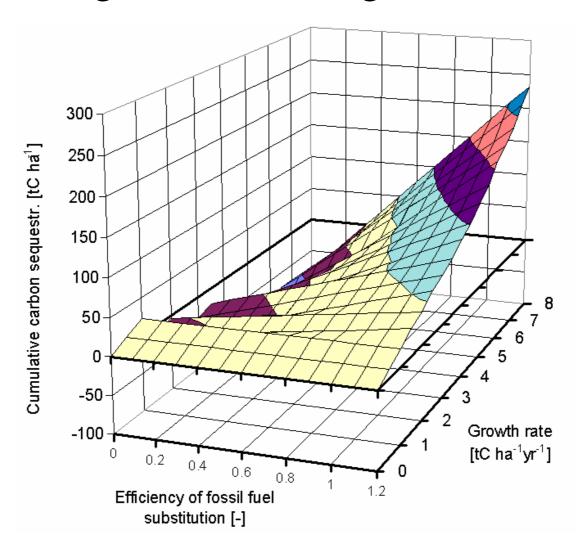
 e_u = emissions from the fuel in use;

 e_{ccs} = emission savings from carbon capture and sequestration;

 e_{ccr} = emission savings from carbon capture and replacement; and


 e_{ee} = emission savings from excess electricity from cogeneration.

Risk-adder approach for indirect land use change (proposed by Öko-Institute (Fritsche et al 2008)


	kg CO _{2eq} /GJ with a risk adder level:			relative to fossil diesel/gasoline		
biofuel route, life-cycle	max	med	min	max	med	min
Rapeseed to RME, EU	117	89	60	38%	4%	-30%
palmoil to PME, Indonesia, rain forest	180	142	103	112%	67%	21%
palmoil to PME, Brazil, tropical	199	154	110	135%	82%	29%
sugarcane to EtOH, Brazil, tropical	60	48	37	-30%	-43%	-56%
maize to EtOH, USA	89	73	57	5%	-14%	-33%
maize to EtOH, EU	69	60	50	-19%	-30%	-41%
SRC/SG to BtL, EU	52	37	23	-39%	-56%	-73%
SRC/SG to BtL, Brazil, tropical	59	42	25	-30%	-50%	-70%
SRC/SG to BtL, Brazil, steppe	73	52	30	-14%	-39%	-64%

bold red = no GHG reduction!

NOTE: includes only above-ground carbon

Difference between Managing forests for bioenergy production vs. managing for carbon storage (Schlamadinger et al 2007)

Estimated levels of land degradation by major region

					-		
	None	Light	Moderate	Severe	Very Severe	Total degradation: Light-Very Severe	Degradation: Moderate – Very Severe
Sub-Saharan	33	24	18	15	10	65	42
Africa							
North Africa and	30	17	19	28	7	70	52
Near East							
Asia and Pacific	28	12	32	22	7	72	61
North Asia east of	53	14	12	17	4	47	33
Urals							
South and Central	23	27	23	22	5	77	50
America							
Europe	9	21	22	36	12	90	70
North America	51	16	16	16	0	44	29
World	35	18	21	20	6	65	47

Source: UNEP, 1992

Degree of soil degradation by sub continental regions (% of total area). Adopted from World Atlas of Desertification (UNEP, 1992b)

	None	Light	Moderate	Strong	Extreme
Africa	83	6	6	4	0.2
Asia	82	7	5	3	<0.1
Australasia	88	11	0.5	0.2	<0.1
Europe	77	6	15	1	0.3
North America	93	1	5	1	0
South America	86	6	6	1	0
World					
Percentage	85	6	7	2	<0.1
Area ('000km")	110483	7490	9106	2956	92

What lessons/issues for biofuels development in Africa?

- Large potential market provides a major opportunity
- Meeting GHG criteria will generally not be a problem
- Land availability is there, but grasslands may be issue
- Degraded lands given low cost of land in general for foreign investors, few incentives to use it
- Co-products allocation should be developed
- lower energy intensity of agriculture in Africa is advantage
- Measurement, monitoring, compliance are the key issues for African producers missing from Directive

www.carensa.net

