

IMPORTANCE OF MICROBIAL SOURCES IN THE PRODUCTION OF BIODIESEL

Dr. B.V.S.K. RAO Lipid Science & Technology Division Indian Institute of Chemical Technology Hyderabad – 500 007

• Feed Stock

• Esterification & Transesterification catalyst

- Vegetable oils
- CultivatedTree-borne

- Animal Fats
- Used Oils
- Fatty Acids

OIL CONTENT OF SOME MICROALGAE SPECIES

Microalgae	Oil content (% dry wt)	Microalgae	Oil content (% dry wt)
Anabaena cylindrical	4-7	Nannochloropsis sp.	31-68
Botryococcus braunii	25-75	Neochloris oleoabundans	35-54
Chlamydomonas rheinhardii	21	Nitzschia sp.	45-47
Chlorella sp.	28-32	Porphyridium cruentum	9-14
Chlorella vulgaris	14-22	Prymnesium parvum	22-38
Chlorella pyrenoidosa	2	Scenedesmus obliquus	12-14
Crypthecodinium cohnii	20	Scenedesmus quadricauda	1-9
Cylindrotheca sp.	16-37	Scenedesmus quadricauda	16-40
Dunaliella bioculata	23	Schizochytrium sp.	50-77
Dunaliella primolecta	8	Spirulina platensis	4-9
Dunaliella salina	6	Spirulina maxima	6-7
Euglena gracilis	14-20	Synechoccus sp.	11
Isochrysis sp.	25-33	Tetraselmis maculate	3
Monallanthus salina	>20	Tetraselmis sueica	15-23
Nannochloris sp.	20-35		

FEED STOCK	OIL YIELD (L/ha)
Soybean	466
Canola	1,190
Jatropha	1,892
Oil Palm	5,950
Microalgae ^a	1,36,900
Microalgae ^b	58,700

^a70% oil ^b30% oil

Yosuf Chisti, Biotechnology Advances, 25 (2007) 294-306

ADVANTAGES OF MICROALGAE AS IC A SOURCE OF BIODIESEL

High Yield

- low cost of production

Algae can grow

- In places away from farm land
 - (No destruction to food chain)
- Sewages
- Near to power plants

(takes CO₂ from smokestacks and yields oil)

Oil Productivity

- Greater than best producing oil crops

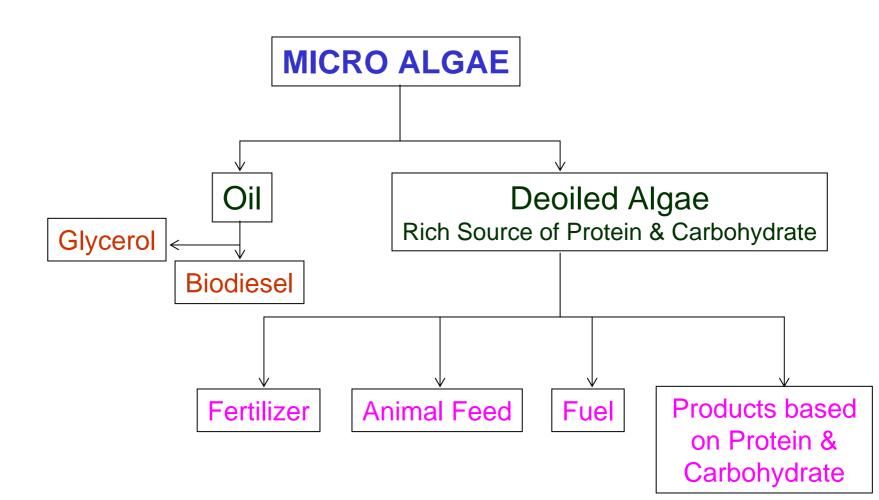
Deoiled biomass

Higher grade protein \rightarrow Animal Feed Balanced N : P ratio \rightarrow Organic Fertilizers

LIMITATION OF ALGAL-OIL FOR THE PRODUCTION OF BIODIESEL

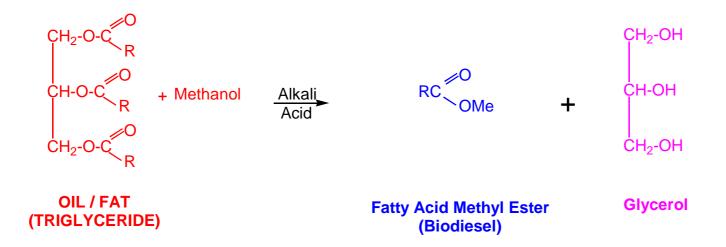
High concentration of Polyunsaturated Fatty Acids

- Arachidonic acid ($C_{20:4}$)
- Docosahexanoic acid ($C_{22:6}$)
- Linolenic acid ($C_{18:3}$)
- Linoleic acid (18:2)
- Storage stability \rightarrow (?)

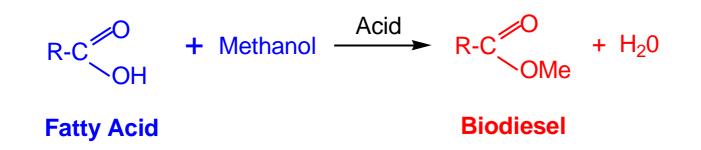

POSSIBLE SOLUTION

- Identification of Right Microbe which
 Produces Oil with optimum FA Composition
- Partial Hydrogenation
 - To reduce unsaturation to desired levels

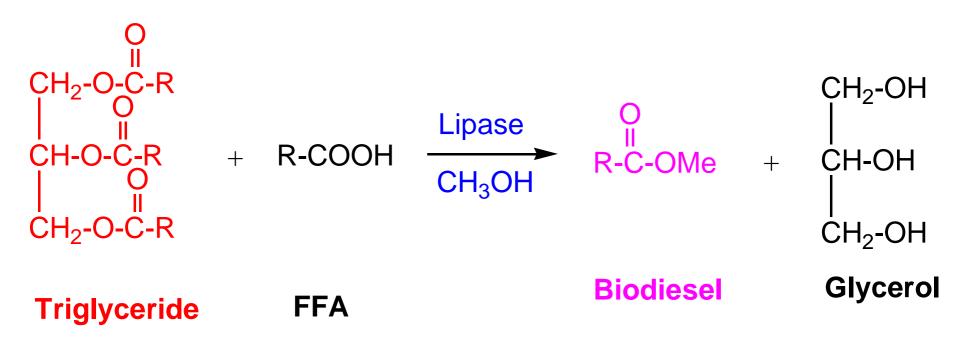
INTEGRATED APPROACH



CHEMISTRY OF BIODIESEL



VERY SIMPLE CHEMISTRY...


VERY LOW FFA – only Transesterification

HIGH FFA – ESTERIFICATION followed by TRANSESTERIFICATION

Lipases simultaneously converts both FFA and TG into Biodiesel

LIPASES USED FOR BIODIESEL PRODUCTION

	-
Candida antarctica (Novozym 435)	Mucor miehei (Lipozyme)
Candida rugosa (Lipase A4)	Rhizopus delemar
Thermomyces lanuginosus(LipozymeTL IM)	Geotricum candidum
Pseudomonas fluorescens	Porcine pancreas
Pseudomonas cepacia (Lipase PS-30)	Fusarium heterosporum
Rhizopus oryzae	Aspergillus niger
Rhizomucar miehei (Lipozyme IM 60)	Chromobacterium viscosum
Pseudomonas fluorescens (Amano AK)	Candida antartica (SP 435)
Rhizomucor miehei (Lipozyme IM-77)	Immobilized <i>R. oryzae</i> cells within BSPs
Immobilized <i>R. oryzae</i> whole cells	Rhizopus niveus (Newlase F)
Burkholderias cepacia (IM BS–30)	Mucor javanicus (Lipase M)
Candida Sp. (SP 382)	Cryptococus ssp. S-2 (Strain CS2)

COMPARISION BETWEEN ALKALI AND LIPASE-CATALYSIS METHODS

Condition	Alkali-catalysis Process	Lipase-catalysis Process
Reaction temperature	60 -70°C	30 -40°C
Free Fatty acids in raw materials	Saponified product	Methyl esters
Water in raw materials	Interference with the reaction	No influence
Yield of methyl esters	Normal	Higher
Recovery of glycerol	Difficult	Easy
Purification of methyl esters	Repeated Washings	None
Production cost	Cheap	Relatively expensive

INHIBITION OF LIPASE ACTIVITY

Factors effecting the lipase activity

- Short chain alcohols MeoH and EtOH
- Glycerol
- Gums

HOW TO OVERCOME?

MeOH

- Step wise addition
- Use of solvents
- Glycerol
 - Treatment with solvents like IPA, 2-butanol, n-butanol etc.
 - Dialysis method using flat sheet membrane

Gums

• Degumming

Other Pretreatments

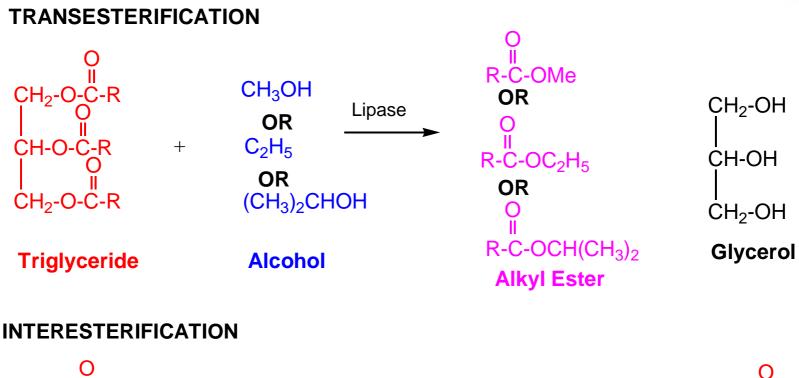
• Treating the used enzyme intermittently with methyl esters and/ or oils

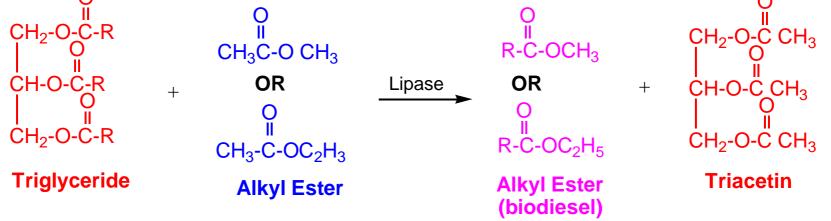
EFFECT OF PRESENCE AND ABSENCE OF SOLVENT III ON ENZYME - BASED BIODIESEL PRODUCTION

Alcohol	Oil Source	Solvent	Lipase	Yield (%)
Methanol	Tallow	Hexane	Mucor miehei	94.8
	Tallow	None	M. miehei	19.4
Ehtanol	Tallow	Hexane	M. miehei	98.0
	Tallow	None	M. miehei	65.5
Isopropanol	Tallow	None	M. miehei	90.3
2-Butanol	Tallow	None	M. miehei	96.4

NOVEL IMMOBILIZATION TECHNIQUES

Immobilization


- Enhances the stability
- Can be recovered and reused


Special Methods

- Phyllosilicate sol gel matrix-based
- Entrapment in sol gel polymer matrix
- On macroporous acrylic resin
- With biomas support particles (BSPs)
- o Cross linking treatment to BSPs

NOVEL ACYL DONORS

LIPASE-MEDIATED CONVERSION OF VEGETABLE OILS INTO BIODIESEL USING ETHYL ACETATE AS ACYL ACCEPTOR

Oil + Ethyl acetate

Novozyme 435 (10%) 50°C, 12 hr, 1:11


Ethyl ester + Triacetin

Oil	Yield (%)
Crude Sunflower oil	92.7
Crude jatropha oil	91.3
Crude Karanja oil	90.0

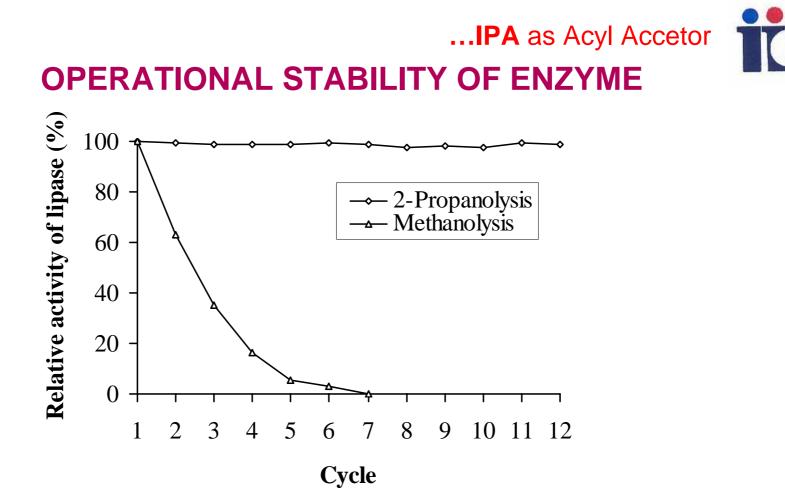
MK Modi, JRC Reddy, BVSK Rao and RBN Prasad, *Bioresource Technologies*, **98** (2007) 1260-1264.

OPERATIONAL STABILITY OF ENZYME

Cycle

Operational stability of lipase in interesterification and ethanolysis of crude jatropha oil at 50°C and 150 rpm using 10% Novozym 435 (% wt/wt of oil). For interesterification: ethyl acetate to oil molar ratio of 11:1 (single step addition of ethyl acetate), 12 h. For ethanolysis: ethanol to oil molar ratio of 4:1 (4 step addition of ethanol), 8 h. \Box Interesterification. \triangle Ethanolysis.

LIPASE-MEDIATED TRANSFORMATION OF VEGETABLE OILS INTO BIODIESEL USING PROPAN-2-OL AS ACYL ACCEPTOR


Oil + IPA

Novozym 435 (10%) 50°C, 8 hr, 1:4

IPA esters + Glycerol

Oil	Yield (%)
Crude Sunflower oil	93.4
Crude jatropha oil	92.8
Crude Karanja oil	91.7

MK Modi, JRC Reddy, BVSK Rao and RBN Prasad, Biotechnlogy Letters, 28: 637-640 (2006)

Operational stability of lipase over repeated cycles in alcoholysis of crude jatropha oil using alcohol to oil molar ratio of 4:1, catalyzed by Novozym 435 (200 mg) at 50 °C and 150 rpm for 8 h. For 2-propanolysis 0.55 g of propan-2-ol added to 2 g of oil in single step. For methanolysis 0.29 g methanol added to 2 g oil in four steps (72.5 mg in each step). 100% Relative activity of lipase in absolute terms corresponds to 93.4 and 92.8% alkyl esters conversion in methanolysis and 2-propanolysis, respectively.

MICROBIAL LIPASE-MEDIATED PREPARATION OF BIODIESEL USING VARIOUS TYPES OF OILS AND ALCOHOLS

C		-
1	1	2
-		

Oil	Alcohol	Lipase(s)	Conditions	Conver- sion (%)
Soybean	Methanol	C. Antarctica (Novozym 435)	Oil: methanol, 1:8; lipase: 4 wt% of oil; 30°C, 3.5 hr	97
Sunflower	Methanol	C. antarctica (Novozyme 435)	Oil: methanol, 1:4; lipase: 7 wt% of oil; water: 400 ppm; 50°C; 16 hr.	97
Jatropha	Methanol, ethanol	Chromobacterium viscosum, C. rugosa,	Oil: alcohol, 1:4; lipase: 10 wt% of oil; 40°C; 8 hr.	62-92
Castor	Ethanol	<i>C. antarctica</i> (Novozym 435), <i>T.lanuginosus</i> (Lipozyme IM)	Oil: ethanol, 1:10; lipase: 20% of oil; 65°C Oil: ethanol, 1:3; lipase: 20 wt% of oil:	81.4 98
Cottonseed	Methanol	C. antarctica (Novozym 435)	65°C. Oil: methanol, 1:4; lipase: 30 wt % of oil; 50°C; 7 hr.	72-94
Restaurant grease	Methanol, ethanol, propanol, isopropanol, butanol	<i>C. antarctica</i> (SP 435), <i>T. lanuginosus, P. cepacia</i> (IMPS-30)	Oil: alcohol, 1:4; lipase: 10 wt% of grease; 40°C; 8-48 hr.	87-95
Canola	Methanol	C. antarctica (Novozym 435)	Oil: methanol, 1:3.5; lipase: 42.3% of oil; water: 7.2%; 38°C; 12.4 hr.	97.9
Rice bran oil	Methanol	<i>C. antarctica</i> (Novozym 435); <i>Rhizomucor miehei</i> (1M-60)	Oil: methanol, 1:3.6; lipase: 5 wt% of oil; 50°C; 4 to 6 hr.	98
Waste bleaching earth containing palm oil	Methanol; ethanol; 1- propanol; 1- butanol; isobutanol	C. cylindrace, C. rugosa, R. oryzae, A. niger, Rhizopus japonicus,	Oil: alcohol, 1:4; lipase: 11 to 475 IU/g of waste activated bleaching earth; 30- 37°C; 4-8 hr.	78-96
Waste edible oil	Methanol	C. antarctica (Novozym 435)	Oil: methanol, 1:3; lipase: 4 wt% of oil; 30°C.	98
Jatropha, karanj, sunflower	Ethyl acetate	C. Antarctica (Novozyme-435)	Oil: ethyl acetate, 1:11; 50°C; 12 hr.	90 – 92.7

CONCLUSIONS

Microbial Sources as Feed Stocks

- •Microbial Biodiesel ... Technically feasible
- •Critical evaluation of Algal Biology through Genetic Engineering
- •To adopt bio-refinary concept for cost reduction
- •Economics need to be improved to make it competitive with petrodiesel

Microbial Sources as Catalysts

- Microbial Enzymes are Effective Catalysts for the production of Biodiesel
- Biotechnological Potential of Microbial Lipases is Steadily Increaing
- Enzyme cost hampers the cost of Biodiesel

THANK YOU