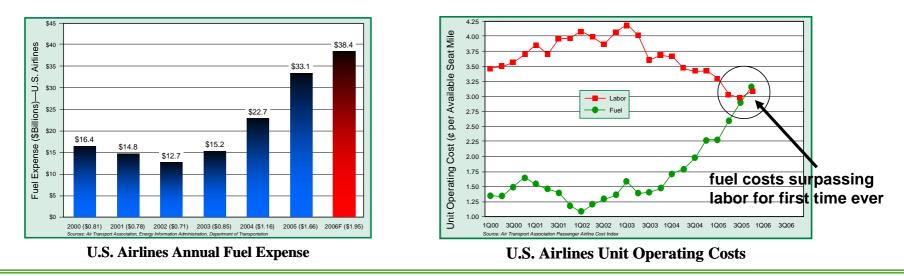


Bio Jet Fuels

William L Roberts Dept of Mech & Aero Eng North Carolina State University Raleigh, NC 27695 USA

The 5th International Biofuels Conference



Centia[™] is a derivation of "green power" in Latin

NC STATE UNIVERSITY

- Initial technical focus is on aviation fuel
 - A big and global market currently not being served
 - Barriers to entry due to technical challenges in making a jet compliant biofuel
 - There is a well-stated need for such a fuel economics and environment
- Jet fuel prices and instability are severely impacting air carriers
 - World uses ~ 73B gallons/year of jet fuel (U.S. uses about 1/3 of this)
 - Has rippling repercussions to economies of all developed nations

5th International Biofuels Conference

• Aviation specification compliance (chemical/physical)

- Cold flow properties (< -47 °C)
- Energy density (44 MJ/kg basis)
- Efficiency (\$/kJ basis)
- Proper ratio of *n*-alkanes, iso-alkanes, cycloparaffins, and aromatics
- Compatibility with materials and additives

• Aviation specification compliance (combustion/kinetic)

- Ignition and extinction characteristics
- Chemical kinetics and flame speed
- Flammability limits

Want aviation biofuel to have similar chemical composition as Jet-A/JP-8

Lower concentrations of aromatic/naphthenes

• Biodiesel from transesterification of crop oils will not suffice

- Considerably lower energy density than Jet-A/JP-8
- Kinetic viscosity ranges from 1.9 to 6.0 cSt @ 40°C; need 1.2 cSt
- Freezing point ~0°C
- Material compatibility issues

NC STATE UNIVERSITY 5th International Biofuels Conference

JP-8 surrogate to match chemical kinetics:

43% *n*-dodecane 27% iso-cetane 15% methylcyclohexane 15%1-methylnapthalene

Market Dynamics are Encouraging New Biofuel Processing Technologies

• Problem statement:

- Current biofuel conversion technologies are limited to classes of feedstock, therefore being at the mercy of commodity markets
 - Examples = corn for ethanol and virgin oils for biodiesel
 - \sim 70 80% of biofuel output cost is driven by the cost of the feedstock
 - Feedstock supply/demand dynamics can destroy production economics
- Biofuels plants generally produce only one type of output also a commodity
- Few to date are addressing the challenges of biojet fuel

• New biofuel processing technologies should be able to:

- Use a wide variety of feedstocks
 - Oils -- saturated, unsaturated, high and low free fatty acid contents, etc.
 - Non-oils -- cellulosic type approaches, gasification, etc.
- Produce a wide variety of biofuels, including "complex" fuels like biojet fuel
- Offer a replacement to petroleum-derived fuels
- Deliver attractive capital and O&M costs competitive to petroleum fuels

• Biodiesel pathway as initial step in multi-step process

- Decarboxylate/deoxygenate methyl esters to increase energy density
- Isomerize to decrease freezing point
- Technically possible, but prohibitively expensive
- Pyrolysis has low yields and is hard to control
 - Need to avoid small HCs due to volatility (e.g., iso-octane flashpoint ~-40°C)
 - May also get tar
- Enzymatic approaches are not mature
 - Low energy input attractive (biological energy vs thermal energy)
 - 'Magic bug' not yet found
- Fisher-Tropsch synthesis of large *n*-alkanes from syngas
 - Wide selection of fuelstocks (e.g., biomass and coal) to generate syngas
 - Demonstrated, but also expensive
- Plasma-assisted approaches
 - Use plasmas to open chemical pathways prohibited at conventional temps
 - Promising technology, but not mature

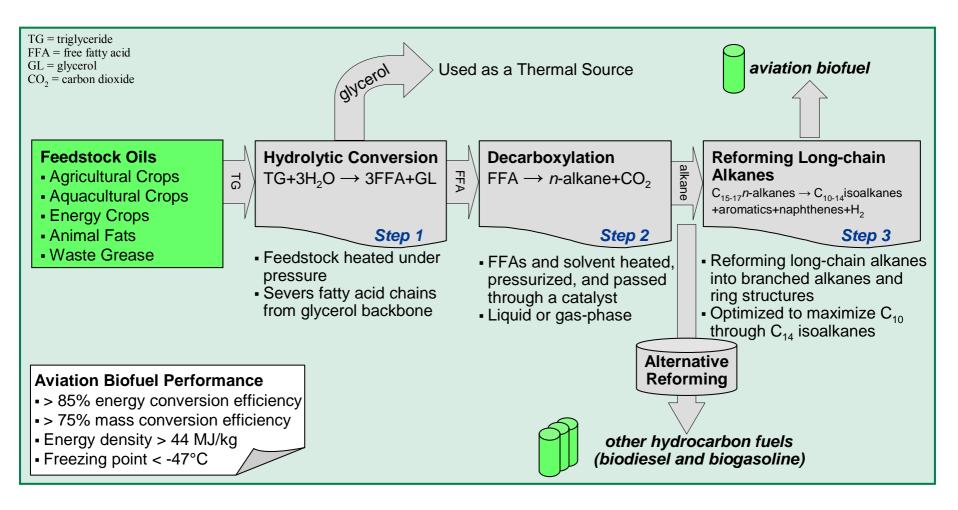
NC STATE UNIVERSITY 5th International Biofuels Conference

• Sasol, South Africa

- Certified 50/50 blend of FT synthetic fuel with Jet-A
- FT feedstock is coal and natural gas

• Syntroleum, US

- FT synthetic fuel with natural gas as feedstock
- USAF flew B-52 in Sept 07 on 50/50 blend with JP-8
- Also working Tyson Foods on animal fats to jet fuel technology (unknown)


• Universal Oil Products, US

- Hydro-deoxygenation of FFA's
 - Cost/source of hydrogen a concern
- Have delivered some biojet fuel to DARPA for testing and certification

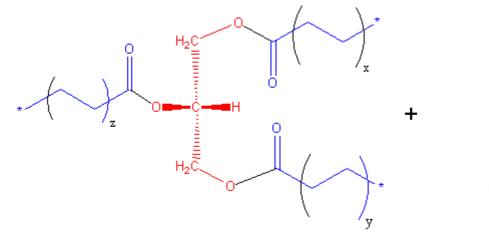
• EERC, US

- Using new feedstock (cuphia) and transesterifing directly to biojet fuel
- GE, US
 - Biomass gasification to bio-oil, hydroprocessing of bio-oil

• Feedstock (input) flexibility

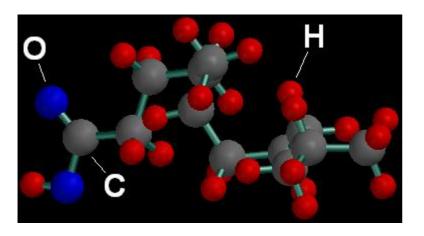
- Process can use almost any renewable oil source
 - Agriculture crops, aquaculture crops, energy crops, animal fats, waste greases, etc
- Allows for the use of the cheapest and most readily available feedstock at any given time or location

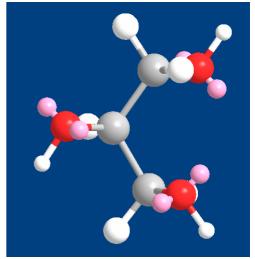
• Biofuel (output) flexibility


- Can produce biojet fuel, 2nd generation biodiesel/additive, and biogasoline
- Allows for output options to maximize the economics; also provides for interim markets during fuel qualification testing

• Performance and aviation compliance

- > 85% energy conversion efficiency expected
- Compliant to biojet fuel requirements cold flow, energy density, etc
- Translates into higher yields, lower costs, and easier qualification
- Maturity, scalability and affordability
 - Demonstrated results drive down risk; scalability well-understood
 - Initial economics shows attractive operating costs per gallon of output

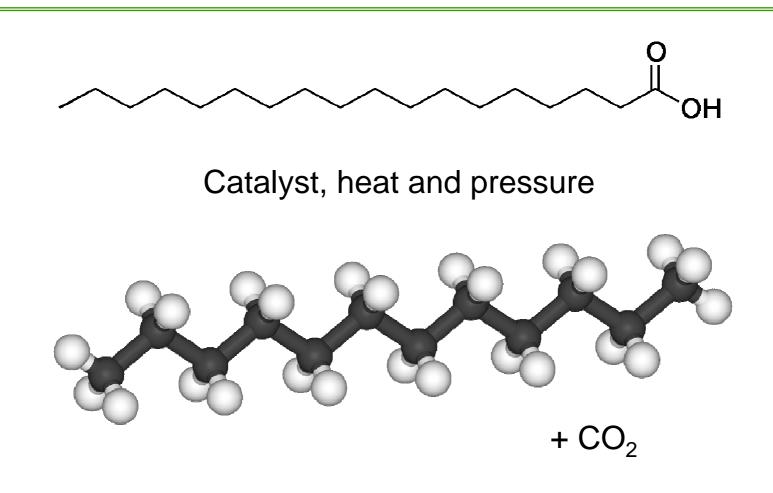

Step 1 - Hydrolysis: TG to FFA



3 H₂O

yields

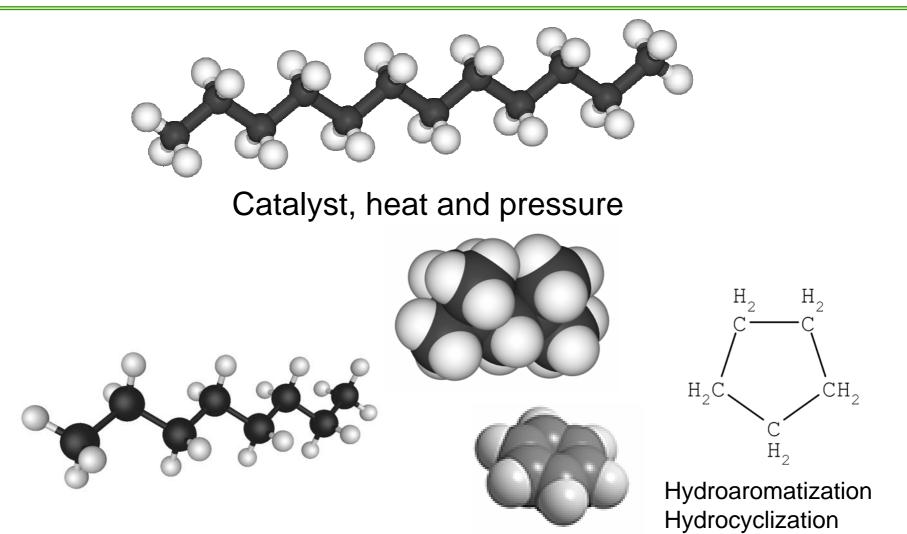
 $3 CH_3(CH_2)_x COOH + C_3 H_5 OH_3$


Fuelstock consists of mixture of triglycerides and FFA

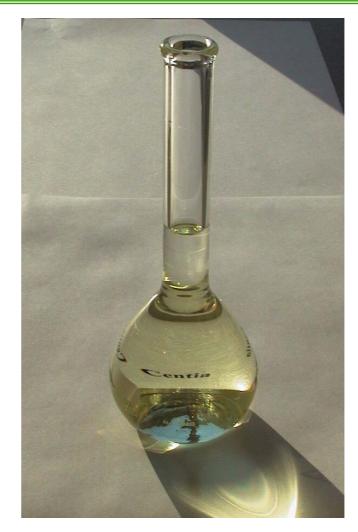
- Composition a function of source
 - Beef tallow primarily stearic acid (saturated)
 - Pork lard primarily oleic acid (mono-unsaturated)
- Price a function of free fatty acid content
 - Edible lard ~0.4% FFA, ~\$0.20/lb
 - Inedible lard ~4% FFA, \$0.15/lb

Hydrolyze at high temperature and pressure

- Convert triglycerides into FFA and glycerol
- 250 °C, 5 MPa, 2 hours, 40% water and 60% oil
- Counterflow geometry
- 99%+ efficient conversion
- Mature technology, demonstrated at industrial scale
 - Colgate-Emery Process most common
 - Energy intensive, but not necessarily bad for Centia[™]
 - No problems anticipated
- Working on faster process (higher temperature)



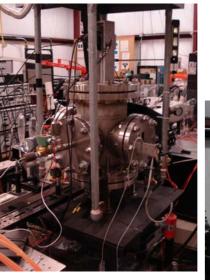
- Liquid phase demonstrated with both saturated and unsaturated fats
- Gas phase demonstrated, unsaturated fats yielding interesting results
 - May be a possible approach to simultaneous decarboxylation and hydroreforming
 - May also be a path way to aromatics directly for the ~8% desired
 - Most likely more difficult to control the product composition
 - Tar and coke
 - Light hydrocarbons
- Will move forward aggressively with <u>liquid phase</u> and continue to investigate gas phase
 - Liquid phase is EM baseline
 - Gas phase an area to be explored in project


Step - 3: Hydroisomerization/Hydrocracking

HC/HI of *n*-Heptadecane

- Good catalyst identified
- Run times varied from 30 minutes to 360 minutes
- Typical temperatures between 250 and 300 °C
- Typical pressures between 20 and 35 atm
- Selectivity and yield optimization continuing

- Build upon successes already accomplished
 - Lab Scale results
 - Engineering Model design and performance/economic modeling completed
 - Commercial vendors established for reactor vessels
- Engineering Model objectives include:
 - End-to-end, integrated demonstration of the technology in Raleigh, NC
 - Scaled up to approximately 20k gallons/year in volume (~ 10 liters/hour)
 - Demonstrate the production of a biojet fuel
 - Demonstrate multiple feedstocks e.g., oils from soy bean, canola/palm, algae, inedible and edible animal fats, and blends thereof
 - Test and qualify all fuels produced
 - Explore production of alternative fuels e.g., 2nd gen biodiesel & biogasoline
 - Validate performance and refine economics
 - Start commercialization planning

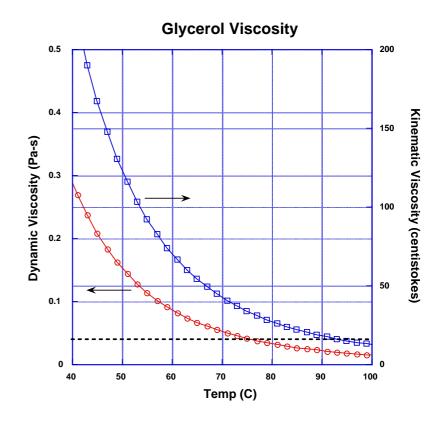


Thank you for your kind attention!

Fuel Characterization

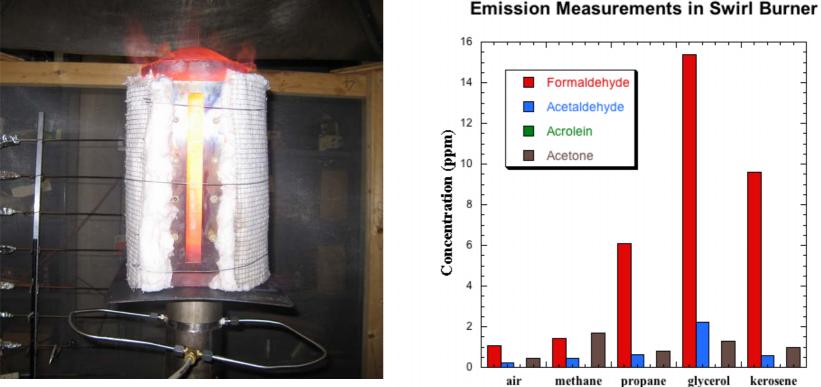
- Need to meet physical properties
 - Viscosity
 - Flash Point
 - Energy Density
 - Freeze Point
- Need to meet chemical kinetic properties
 - Ignition characteristics
 - Laminar burning velocity
 - Extinction strain rate
 - Smoke point
- Need to demonstrate in a jet engine
 - Thrust
 - Emissions

NC STATE UNIVERSITY

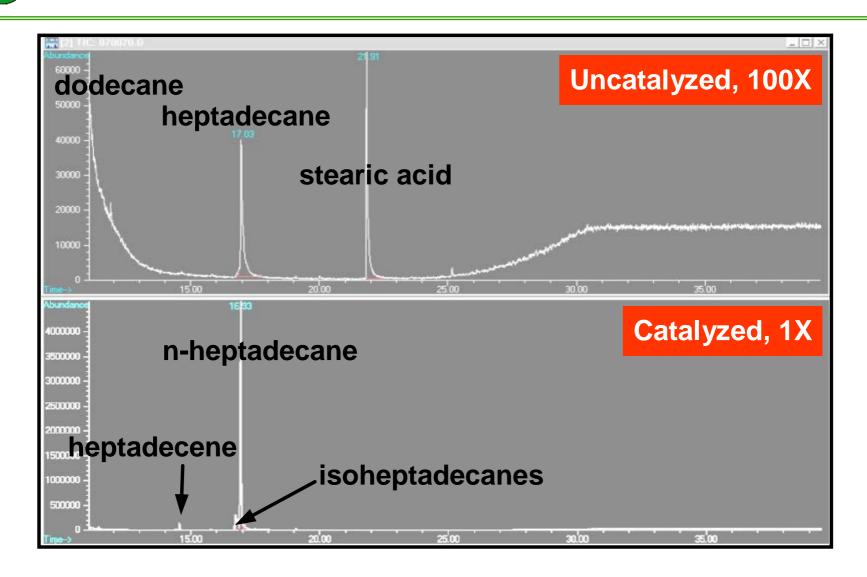

Glycerol Combustion

• One mole of glycerol produced for each mole of triglyceride

- 10% by weight
- Low value and often considered waste


Oxygenated hydrocarbon

- 'free' energy source for thermal inputs into process
 - ~16 MJ/kg
- Potentially a clean burning fuel
- Problems
 - Auto-ignition temp 170 °C higher than nalkanes of interest
 - Viscosity
 - Acrolein emission?
- Investigating oxidation
 characteristics using swirl burner
 - Can adjust residence time and burning characteristics
 - Measuring emission to detect aldehydes

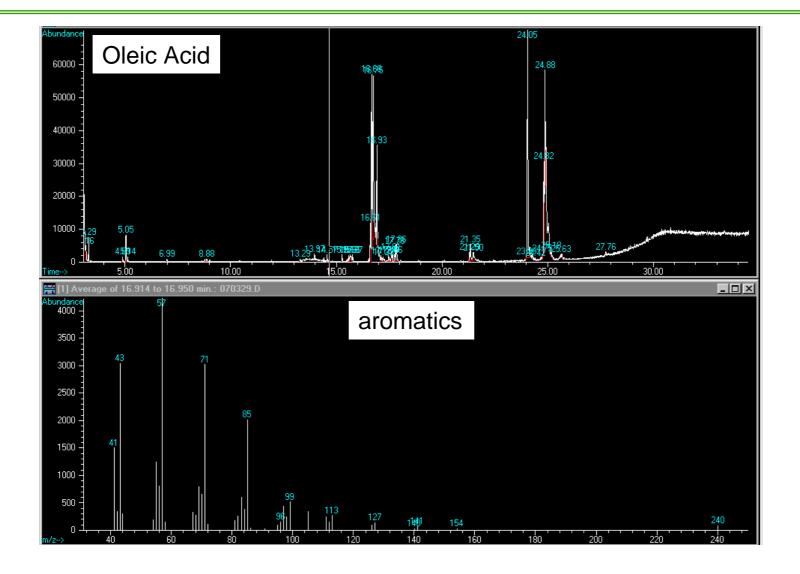


Swirl Burner on Pure Glycerol

Emission Measurements in Swirl Burner

Liquid Phase Decarboxylation of Stearic Acid

NC STATE UNIVERSITY 5th International Biofuels Conference



Gas Phase Decarboxylation

Gas Phase Decarboxylation

• DARPA

- Primarily interested in 'alternative jet fuels' of which biojet fuel is a subset
- 4 18m grants at ~\$5M each

• Virgin Fuels

- Part of The Virgin Group
- Set aside up to ~\$3B over next decade for biofuels
- Committed approx \$300M this year, primarily to ethanol production
- Committed to fly 747 on biojet fuel in 2008
- Air New Zealand + Boeing + Rolls Royce
 - Major push to be first commercial airline to fly biojet fueled aircraft

Tecbio (Brazil)

- Pushing their crop, the Babassu palm, for biokerosene (18 Mha wild)
- Working with NASA in US
- EU in general
 - Carbon counting will be a primary driver for aviation biofuels

- Remove carboxyl group from FFA to form *n*-alkane
 - FFA \rightarrow *n*-alkane + CO₂
- Catalytic process
 - Catalyst with high efficiency and selectivity identified
- Demonstrated at lab scale
 - Liquid-phase stirred catalytic slurry in HC solvent
 - Gas-phase in continuous flow heated vessel
 - Both currently under investigation at NC State
 - Promising results from both

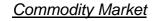
Engineering challenges to be addressed

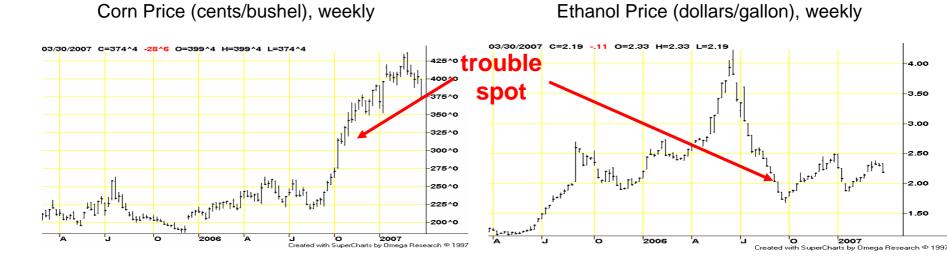
- Gas phase vs. liquid phase
- Optimal characteristics of catalyst (physical and chemical)
- Catalyst deactivation and regeneration
- Role of hydrogen carrier gas
 - Separation of CO₂ from H₂
- Role of solvent in liquid reaction

Integrated Engineering Model (EM) is the Next Step

- 12-month program and \$7M budget
- Build upon successes already demonstrated at Lab Scale
- EM objectives include:
 - End-to-end, integrated demonstration of the technology in MAE West facility
 - Scaled up to approximately 20k gallons/year in volume (~ 10 liters/hour)
 - Demonstrate the production of a biojet fuel
 - Demonstrate multiple feedstocks e.g., oils from soy bean, canola/palm, algae, inedible and edible animal fats, and blends thereof
 - Test and qualify (internally and with SWRI) fuels produced
 - Validate performance and refine economics
 - Explore production of alternative fuels e.g., 2nd gen biodiesel & bio-gasoline
- Begin commercialization planning
 - Pilot-plant (~ 1 5 M gal/yr) requirements definition and conceptual design
 - Conduct key trades and other technology risk activities
 - Administration IP filings, funds for long-term operations, etc
 - Continues for at least 24 month period under this funding profile

- Continuously stirred autoclave reactor for liquid-phase process
- Stearic acid in dodecane solvent with Pd/C catalyst
- 300°C temp and 15 atm pressure
- Reaction time of 300 minutes
- Monitor CO₂ evolution to determine reaction progress
- Decarboxlyation successful
- Have also used heptadecane
 as solvent successfully




- Have demonstrated hydrolysis at small scale in batch mode
- Currently constructing continuous flow Engineering Model scale reactor
- Pressures up to 50 atm and temps up to 250 °C
- EM will use inductive heating rather than glycerol combustion
- 10 liter/hr capacity
- Flash vaporization to remove water for reuse and water-free glycerol for combustion
- Heat exchanger for glycerol animal fats / vegetable oils

Commodity Market

• Feedstock (input) flexibility

- Process can use almost any renewable oil source
 - Agriculture crops, aquaculture crops, energy crops, animal fats, waste greases, etc
- Allows for the use of the cheapest and most readily available feedstock at any given time or location

• Biofuel (output) flexibility

- Can produce biojet fuel, 2nd generation biodiesel/additive, and bio-gasoline
- Allows for output options to maximize the economics; also provides for interim markets during fuel qualification testing

• Performance and aviation compliance

- > 85% energy conversion efficiency
- Compliant to biojet fuel requirements cold flow, energy density, etc
- Translates into higher yields, lower costs, and easier qualification
- Maturity, scalability and affordability
 - Demonstrated results drive down risk; scalability well-understood
 - Initial economics shows attractive operating costs per gallon of output

• Technology developed by North Carolina State University (NCSU)

- A recognized leader in bioenergy
- Leveraging development and know-how from decades of biofuels work

• 3 U.S. Patent and Trademark Office provisional patents filed

- More likely coming . . .
- Conversion to non-provisional and Patent Cooperation Treaty filings this Fall
- Licensed on an exclusive worldwide basis to DEC
 - DEC bringing systems engineering and commercialization expertise
- Broader team of 5 strategic partner companies established
- Lab Scale demonstration successfully completed to validate the fundamental science and engineering
- Next steps
 - 12 month Integrated Engineering Model demonstration
 - Commercial planning: system design, pilot-plant location and feasibility

- Straight chain C₁₅-C₁₇ alkanes do not have required chemical or physical properties
- Catalytically isomerize/crack n-alkanes
 - Shorter chain length $(C_{10}-C_{14})$
 - Introduce chain branching
 - Changes cold flow properties significantly
 - Dramatic change in ignition characteristics
 - Introduce cyclic compounds

• Demonstrated at industrial scale

- HI/HC a commercially viable process in petrochemical industry
- Heptadecane HI/HC demonstrated at NCSU
 - Stirred autoclave reactor, similar to reactor used for decarboxlyation
- Determining catalyst and "recipe" to produce jet fuel