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Biojet Fuel is a Big Deal with Global Implications

• Initial technical focus is on aviation fuel
– A big and global market currently not being served
– Barriers to entry due to technical challenges in making a jet compliant biofuel
– There is a well-stated need for such a fuel - economics and environment

• Jet fuel prices and instability are severely impacting air carriers
– World uses ~ 73B gallons/year of jet fuel (U.S. uses about 1/3 of this)
– Has rippling repercussions to economies of all developed nations
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fuel costs surpassing
labor for first time ever

Sources: Air Transport Association, Energy Information Administration, Department of Transportation
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Aviation Biofuel Challenges

• Aviation specification compliance (chemical/physical)
– Cold flow properties (< -47 °C)
– Energy density (44 MJ/kg basis)
– Efficiency ($/kJ basis)
– Proper ratio of n-alkanes, iso-alkanes, cycloparaffins, and aromatics
– Compatibility with materials and additives

• Aviation specification compliance (combustion/kinetic)
– Ignition and extinction characteristics
– Chemical kinetics and flame speed
– Flammability limits

• Want aviation biofuel to have similar chemical
composition as Jet-A/JP-8

– Lower concentrations of aromatic/naphthenes
• Biodiesel from transesterification of crop oils will not suffice

– Considerably lower energy density than Jet-A/JP-8 
– Kinetic viscosity ranges from 1.9 to 6.0 cSt @ 40°C; need 1.2 cSt
– Freezing point ~0°C
– Material compatibility issues

JP-8 surrogate to match chemical kinetics:
43% n-dodecane
27% iso-cetane
15% methylcyclohexane
15%1-methylnapthalene
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Market Dynamics are Encouraging New Biofuel 
Processing Technologies

• Problem statement:
– Current biofuel conversion technologies are limited to classes of feedstock, 

therefore being at the mercy of commodity markets
• Examples = corn for ethanol and virgin oils for biodiesel
• ~ 70 - 80% of biofuel output cost is driven by the cost of the feedstock
• Feedstock supply/demand dynamics can destroy production economics

– Biofuels plants generally produce only one type of output – also a commodity
– Few to date are addressing the challenges of biojet fuel

• New biofuel processing technologies should be able to:
– Use a wide variety of feedstocks

• Oils -- saturated, unsaturated, high and low free fatty acid contents, etc.
• Non-oils -- cellulosic type approaches, gasification, etc.

– Produce a wide variety of biofuels, including “complex” fuels like biojet fuel
– Offer a replacement to petroleum-derived fuels
– Deliver attractive capital and O&M costs competitive to petroleum fuels
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Other Aviation Biofuel Approaches 

• Biodiesel pathway as initial step in multi-step process
– Decarboxylate/deoxygenate methyl esters to increase energy density
– Isomerize to decrease freezing point
– Technically possible, but prohibitively expensive

• Pyrolysis has low yields and is hard to control
– Need to avoid small HCs due to volatility (e.g., iso-octane flashpoint ~-40°C)
– May also get tar

• Enzymatic approaches are not mature
– Low energy input attractive (biological energy vs thermal energy)
– ‘Magic bug’ not yet found

• Fisher-Tropsch synthesis of large n-alkanes from syngas
– Wide selection of fuelstocks (e.g., biomass and coal) to generate syngas
– Demonstrated, but also expensive

• Plasma-assisted approaches
– Use plasmas to open chemical pathways prohibited at conventional temps
– Promising technology, but not mature
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Current Alternative Jet Fuel Producers

• Sasol, South Africa
– Certified 50/50 blend of FT synthetic fuel with Jet-A
– FT feedstock is coal and natural gas

• Syntroleum, US
– FT synthetic fuel with natural gas as feedstock
– USAF flew B-52 in Sept 07 on 50/50 blend with JP-8
– Also working Tyson Foods on animal fats to jet fuel technology (unknown)

• Universal Oil Products, US
– Hydro-deoxygenation of FFA’s

• Cost/source of hydrogen a concern 
– Have delivered some biojet fuel to DARPA for testing and certification

• EERC, US
– Using new feedstock (cuphia) and transesterifing directly to biojet fuel

• GE, US
– Biomass gasification to bio-oil, hydroprocessing of bio-oil
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Centia™ Process Overview

Feedstock Oils
Agricultural Crops
Aquacultural Crops
Energy Crops
Animal Fats
Waste Grease

Hydrolytic Conversion
TG+3H2O → 3FFA+GL

Decarboxylation
FFA → n-alkane+CO2

Reforming Long-chain 
Alkanes
C15-17n-alkanes → C10-14isoalkanes
+aromatics+naphthenes+H2

FFA

alkane

TG

Step 1 Step 3Step 2

aviation biofuel

other hydrocarbon fuels
(biodiesel and biogasoline)

Feedstock heated under 
pressure
Severs fatty acid chains 
from glycerol backbone

FFAs and solvent heated, 
pressurized, and passed 
through a catalyst
Liquid or gas-phase

Reforming long-chain alkanes
into branched alkanes and 
ring structures
Optimized to maximize C10
through C14 isoalkanes

Alternative
Reforming

Used as a Thermal Source
glycerol

TG = triglyceride
FFA = free fatty acid
GL = glycerol
CO2 = carbon dioxide

Aviation Biofuel Performance
> 85% energy conversion efficiency
> 75% mass conversion efficiency
Energy density > 44 MJ/kg
Freezing point < -47°C
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Attributes of the Process

• Feedstock (input) flexibility
– Process can use almost any renewable oil source

• Agriculture crops, aquaculture crops, energy crops, animal fats, waste greases, etc
– Allows for the use of the cheapest and most readily available feedstock at any 

given time or location
• Biofuel (output) flexibility

– Can produce biojet fuel, 2nd generation biodiesel/additive, and biogasoline
– Allows for output options to maximize the economics; also provides for interim 

markets during fuel qualification testing
• Performance and aviation compliance

– > 85% energy conversion efficiency expected
– Compliant to biojet fuel requirements – cold flow, energy density, etc
– Translates into higher yields, lower costs, and easier qualification

• Maturity, scalability and affordability
– Demonstrated results drive down risk; scalability well-understood
– Initial economics shows attractive operating costs per gallon of output
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Step 1 - Hydrolysis: TG to FFA

3 H2O+

yields

3 CH3(CH2)xCOOH   +    C3H5OH3
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Step 1 - Hydrolysis

• Fuelstock consists of mixture of triglycerides and FFA
– Composition a function of source

• Beef tallow primarily stearic acid (saturated)
• Pork lard primarily oleic acid (mono-unsaturated)

– Price a function of free fatty acid content
• Edible lard ~0.4% FFA, ~$0.20/lb
• Inedible lard ~4% FFA, $0.15/lb

• Hydrolyze at high temperature and pressure
– Convert triglycerides into FFA and glycerol
– 250 °C, 5 MPa, 2 hours, 40% water and 60% oil
– Counterflow geometry
– 99%+ efficient conversion

• Mature technology, demonstrated at industrial scale
– Colgate-Emery Process most common
– Energy intensive, but not necessarily bad for Centia™
– No problems anticipated

• Working on faster process (higher temperature)
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Step 2 - Decarboxylation: FFA to n-alkane

Catalyst, heat and pressure

+ CO2
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Decarboxylation

• Liquid phase demonstrated with both saturated and unsaturated 
fats

• Gas phase demonstrated, unsaturated fats yielding interesting 
results
– May be a possible approach to simultaneous decarboxylation and hydro-

reforming
– May also be a path way to aromatics directly for the ~8% desired
– Most likely more difficult to control the product composition

• Tar and coke
• Light hydrocarbons

• Will move forward aggressively with liquid phase and continue to 
investigate gas phase
– Liquid phase is EM baseline
– Gas phase an area to be explored in project
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Step - 3: Hydroisomerization/Hydrocracking

Catalyst, heat and pressure

Hydroaromatization
Hydrocyclization
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HC/HI of n-Heptadecane

• Good catalyst identified

• Run times varied from 30 
minutes to 360 minutes

• Typical temperatures between 
250 and 300 °C

• Typical pressures between 20 
and 35 atm

• Selectivity and yield 
optimization continuing
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Path Forward

• Build upon successes already accomplished
– Lab Scale results
– Engineering Model design and performance/economic modeling completed
– Commercial vendors established for reactor vessels

• Engineering Model objectives include:
– End-to-end, integrated demonstration of the technology in Raleigh, NC
– Scaled up to approximately 20k gallons/year in volume (~ 10 liters/hour)
– Demonstrate the production of a biojet fuel
– Demonstrate multiple feedstocks – e.g., oils from soy bean, canola/palm, 

algae, inedible and edible animal fats, and blends thereof
– Test and qualify all fuels produced
– Explore production of alternative fuels – e.g., 2nd gen biodiesel & biogasoline
– Validate performance and refine economics
– Start commercialization planning
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Thank you for your kind attention!
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Fuel Characterization

• Need to meet physical 
properties
– Viscosity
– Flash Point 
– Energy Density
– Freeze Point

• Need to meet chemical kinetic 
properties
– Ignition characteristics
– Laminar burning velocity
– Extinction strain rate
– Smoke point

• Need to demonstrate in a jet 
engine
– Thrust
– Emissions
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Glycerol Combustion

• One mole of glycerol produced for 
each mole of triglyceride

– 10% by weight
– Low value and often considered waste

• Oxygenated hydrocarbon
– ‘free’ energy source for thermal inputs 

into process
• ~16 MJ/kg

– Potentially a clean burning fuel
– Problems

• Auto-ignition temp 170 °C higher than n-
alkanes of interest

• Viscosity
• Acrolein emission?

• Investigating oxidation 
characteristics using swirl burner

– Can adjust residence time and burning 
characteristics

– Measuring emission to detect aldehydes
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Swirl Burner on Pure Glycerol
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Liquid Phase Decarboxylation of Stearic Acid

dodecane

stearic acid

heptadecane
Uncatalyzed, 100X

Catalyzed, 1X
n-heptadecane

isoheptadecanes
heptadecene
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Gas Phase Decarboxylation

Stearic acid

n-Heptadecane



5th International Biofuels Conference

Gas Phase Decarboxylation

Oleic Acid

aromatics
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Who’s pushing Biojet fuels forward?

• DARPA
– Primarily interested in ‘alternative jet fuels’ of which biojet fuel is a subset
– 4 18m grants at ~$5M each

• Virgin Fuels
– Part of The Virgin Group
– Set aside up to ~$3B over next decade for biofuels
– Committed approx $300M this year, primarily to ethanol production
– Committed to fly 747 on biojet fuel in 2008

• Air New Zealand + Boeing + Rolls Royce
– Major push to be first commercial airline to fly biojet fueled aircraft

• Tecbio (Brazil)
– Pushing their crop, the Babassu palm, for biokerosene (18 Mha wild)
– Working with NASA in US

• EU in general
– Carbon counting will be a primary driver for aviation biofuels
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Step 2 - Decarboxylation

• Remove carboxyl group from FFA to form n-alkane
– FFA → n-alkane + CO2

• Catalytic process
– Catalyst with high efficiency and selectivity identified

• Demonstrated at lab scale
– Liquid-phase stirred catalytic slurry in HC solvent
– Gas-phase in continuous flow heated vessel
– Both currently under investigation at NC State

• Promising results from both

• Engineering challenges to be addressed 
– Gas phase vs. liquid phase
– Optimal characteristics of catalyst (physical and chemical)
– Catalyst deactivation and regeneration
– Role of hydrogen carrier gas

• Separation of CO2 from H2

– Role of solvent in liquid reaction
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Integrated Engineering Model (EM) is the Next Step

• 12-month program and $7M budget
• Build upon successes already demonstrated at Lab Scale
• EM objectives include:

– End-to-end, integrated demonstration of the technology in MAE West facility
– Scaled up to approximately 20k gallons/year in volume (~ 10 liters/hour)
– Demonstrate the production of a biojet fuel
– Demonstrate multiple feedstocks – e.g., oils from soy bean, canola/palm, 

algae, inedible and edible animal fats, and blends thereof
– Test and qualify (internally and with SWRI) fuels produced
– Validate performance and refine economics
– Explore production of alternative fuels – e.g., 2nd gen biodiesel & bio-gasoline

• Begin commercialization planning
– Pilot-plant (~ 1 – 5 M gal/yr) requirements definition and conceptual design
– Conduct key trades and other technology risk activities
– Administration – IP filings, funds for long-term operations, etc
– Continues for at least 24 month period under this funding profile
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Decarboxylation of FFAs

• Continuously stirred autoclave 
reactor for liquid-phase 
process

• Stearic acid in dodecane 
solvent with Pd/C catalyst

• 300°C temp and 15 atm 
pressure

• Reaction time of 300 minutes
• Monitor CO2 evolution to 

determine reaction progress
• Decarboxlyation successful
• Have also used heptadecane 

as solvent successfully
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EM Scale Hydrolysis Reactor

• Have demonstrated hydrolysis 
at small scale in batch mode

• Currently constructing 
continuous flow Engineering 
Model scale reactor

• Pressures up to 50 atm and 
temps up to 250 °C

• EM will use inductive heating 
rather than glycerol 
combustion

• 10 liter/hr capacity
• Flash vaporization to remove 

water for reuse and water-free 
glycerol for combustion

• Heat exchanger for glycerol -
animal fats / vegetable oils
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Example of Commodity Risks 

Commodity Market Commodity Market

Corn Price (cents/bushel), weekly Ethanol Price (dollars/gallon), weekly

trouble
spot
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Re-Cap -- Key Advantages of Centia™ Process

• Feedstock (input) flexibility
– Process can use almost any renewable oil source

• Agriculture crops, aquaculture crops, energy crops, animal fats, waste greases, etc
– Allows for the use of the cheapest and most readily available feedstock at any 

given time or location
• Biofuel (output) flexibility

– Can produce biojet fuel, 2nd generation biodiesel/additive, and bio-gasoline
– Allows for output options to maximize the economics; also provides for interim 

markets during fuel qualification testing
• Performance and aviation compliance

– > 85% energy conversion efficiency
– Compliant to biojet fuel requirements – cold flow, energy density, etc
– Translates into higher yields, lower costs, and easier qualification

• Maturity, scalability and affordability
– Demonstrated results drive down risk; scalability well-understood
– Initial economics shows attractive operating costs per gallon of output
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Centia™ Background

• Technology developed by North Carolina State University (NCSU)
– A recognized leader in bioenergy
– Leveraging development and know-how from decades of biofuels work

• 3 U.S. Patent and Trademark Office provisional patents filed
– More likely coming . . .
– Conversion to non-provisional and Patent Cooperation Treaty filings this Fall

• Licensed on an exclusive worldwide basis to DEC
– DEC bringing systems engineering and commercialization expertise

• Broader team of 5 strategic partner companies established
• Lab Scale demonstration successfully completed to validate the 

fundamental science and engineering
• Next steps

– 12 month Integrated Engineering Model demonstration
– Commercial planning:  system design, pilot-plant location and feasibility
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Step 3 - Hydroisomerization

• Straight chain C15-C17 alkanes do not have required chemical or 
physical properties

• Catalytically isomerize/crack n-alkanes
– Shorter chain length (C10-C14)

– Introduce chain branching
• Changes cold flow properties significantly

• Dramatic change in ignition characteristics

– Introduce cyclic compounds

• Demonstrated at industrial scale
– HI/HC a commercially viable process in petrochemical industry

– Heptadecane HI/HC demonstrated at NCSU
• Stirred autoclave reactor, similar to reactor used for decarboxlyation

• Determining catalyst and “recipe” to produce jet fuel


